aboutsummaryrefslogtreecommitdiff
path: root/src/rpc/layout/version.rs
diff options
context:
space:
mode:
Diffstat (limited to 'src/rpc/layout/version.rs')
-rw-r--r--src/rpc/layout/version.rs846
1 files changed, 846 insertions, 0 deletions
diff --git a/src/rpc/layout/version.rs b/src/rpc/layout/version.rs
new file mode 100644
index 00000000..ee4b2821
--- /dev/null
+++ b/src/rpc/layout/version.rs
@@ -0,0 +1,846 @@
+use std::collections::HashMap;
+use std::collections::HashSet;
+use std::convert::TryInto;
+
+use bytesize::ByteSize;
+use itertools::Itertools;
+
+use garage_util::crdt::{Crdt, LwwMap};
+use garage_util::data::*;
+use garage_util::error::*;
+
+use super::graph_algo::*;
+use super::*;
+
+// The Message type will be used to collect information on the algorithm.
+pub type Message = Vec<String>;
+
+impl LayoutVersion {
+ pub fn new(replication_factor: usize) -> Self {
+ // We set the default zone redundancy to be Maximum, meaning that the maximum
+ // possible value will be used depending on the cluster topology
+ let parameters = LayoutParameters {
+ zone_redundancy: ZoneRedundancy::Maximum,
+ };
+
+ LayoutVersion {
+ version: 0,
+ replication_factor,
+ partition_size: 0,
+ roles: LwwMap::new(),
+ node_id_vec: Vec::new(),
+ nongateway_node_count: 0,
+ ring_assignment_data: Vec::new(),
+ parameters,
+ }
+ }
+
+ // ===================== accessors ======================
+
+ /// Returns a list of IDs of nodes that have a role in this
+ /// version of the cluster layout, including gateway nodes
+ pub fn all_nodes(&self) -> &[Uuid] {
+ &self.node_id_vec[..]
+ }
+
+ /// Returns a list of IDs of nodes that have a storage capacity
+ /// assigned in this version of the cluster layout
+ pub fn nongateway_nodes(&self) -> &[Uuid] {
+ &self.node_id_vec[..self.nongateway_node_count]
+ }
+
+ /// Returns the role of a node in the layout, if it has one
+ pub fn node_role(&self, node: &Uuid) -> Option<&NodeRole> {
+ match self.roles.get(node) {
+ Some(NodeRoleV(Some(v))) => Some(v),
+ _ => None,
+ }
+ }
+
+ /// Returns the capacity of a node in the layout, if it has one
+ pub fn get_node_capacity(&self, uuid: &Uuid) -> Option<u64> {
+ match self.node_role(uuid) {
+ Some(NodeRole {
+ capacity: Some(cap),
+ zone: _,
+ tags: _,
+ }) => Some(*cap),
+ _ => None,
+ }
+ }
+
+ /// Given a node uuids, this function returns the label of its zone if it has one
+ pub fn get_node_zone(&self, uuid: &Uuid) -> Option<&str> {
+ match self.node_role(uuid) {
+ Some(role) => Some(&role.zone),
+ _ => None,
+ }
+ }
+
+ /// Returns the number of partitions associated to this node in the ring
+ pub fn get_node_usage(&self, uuid: &Uuid) -> Result<usize, Error> {
+ for (i, id) in self.node_id_vec.iter().enumerate() {
+ if id == uuid {
+ let mut count = 0;
+ for nod in self.ring_assignment_data.iter() {
+ if i as u8 == *nod {
+ count += 1
+ }
+ }
+ return Ok(count);
+ }
+ }
+ Err(Error::Message(
+ "The Uuid does not correspond to a node present in the \
+ cluster or this node does not have a positive capacity."
+ .into(),
+ ))
+ }
+
+ /// Get the partition in which data would fall on
+ pub fn partition_of(&self, position: &Hash) -> Partition {
+ let top = u16::from_be_bytes(position.as_slice()[0..2].try_into().unwrap());
+ top >> (16 - PARTITION_BITS)
+ }
+
+ /// Get the list of partitions and the first hash of a partition key that would fall in it
+ pub fn partitions(&self) -> impl Iterator<Item = (Partition, Hash)> + '_ {
+ (0..(1 << PARTITION_BITS)).map(|i| {
+ let top = (i as u16) << (16 - PARTITION_BITS);
+ let mut location = [0u8; 32];
+ location[..2].copy_from_slice(&u16::to_be_bytes(top)[..]);
+ (i as u16, Hash::from(location))
+ })
+ }
+
+ /// Return the n servers in which data for this hash should be replicated
+ pub fn nodes_of(&self, position: &Hash, n: usize) -> impl Iterator<Item = Uuid> + '_ {
+ assert_eq!(n, self.replication_factor);
+
+ let data = &self.ring_assignment_data;
+
+ let partition_nodes = if data.len() == self.replication_factor * (1 << PARTITION_BITS) {
+ let partition_idx = self.partition_of(position) as usize;
+ let partition_start = partition_idx * self.replication_factor;
+ let partition_end = (partition_idx + 1) * self.replication_factor;
+ &data[partition_start..partition_end]
+ } else {
+ warn!("Ring not yet ready, read/writes will be lost!");
+ &[]
+ };
+
+ partition_nodes
+ .iter()
+ .map(move |i| self.node_id_vec[*i as usize])
+ }
+
+ // ===================== internal information extractors ======================
+
+ pub(crate) fn expect_get_node_capacity(&self, uuid: &Uuid) -> u64 {
+ self.get_node_capacity(uuid)
+ .expect("non-gateway node with zero capacity")
+ }
+
+ pub(crate) fn expect_get_node_zone(&self, uuid: &Uuid) -> &str {
+ self.get_node_zone(uuid).expect("node without a zone")
+ }
+
+ /// Returns the sum of capacities of non gateway nodes in the cluster
+ fn get_total_capacity(&self) -> u64 {
+ let mut total_capacity = 0;
+ for uuid in self.nongateway_nodes() {
+ total_capacity += self.expect_get_node_capacity(uuid);
+ }
+ total_capacity
+ }
+
+ /// Returns the effective value of the zone_redundancy parameter
+ pub(crate) fn effective_zone_redundancy(&self) -> usize {
+ match self.parameters.zone_redundancy {
+ ZoneRedundancy::AtLeast(v) => v,
+ ZoneRedundancy::Maximum => {
+ let n_zones = self
+ .roles
+ .items()
+ .iter()
+ .filter_map(|(_, _, role)| role.0.as_ref().map(|x| x.zone.as_str()))
+ .collect::<HashSet<&str>>()
+ .len();
+ std::cmp::min(n_zones, self.replication_factor)
+ }
+ }
+ }
+
+ /// Check a cluster layout for internal consistency
+ /// (assignment, roles, parameters, partition size)
+ /// returns true if consistent, false if error
+ pub fn check(&self) -> Result<(), String> {
+ // Check that the assignment data has the correct length
+ let expected_assignment_data_len = (1 << PARTITION_BITS) * self.replication_factor;
+ if self.ring_assignment_data.len() != expected_assignment_data_len {
+ return Err(format!(
+ "ring_assignment_data has incorrect length {} instead of {}",
+ self.ring_assignment_data.len(),
+ expected_assignment_data_len
+ ));
+ }
+
+ // Check that node_id_vec contains the correct list of nodes
+ let mut expected_nodes = self
+ .roles
+ .items()
+ .iter()
+ .filter(|(_, _, v)| v.0.is_some())
+ .map(|(id, _, _)| *id)
+ .collect::<Vec<_>>();
+ expected_nodes.sort();
+ let mut node_id_vec = self.node_id_vec.clone();
+ node_id_vec.sort();
+ if expected_nodes != node_id_vec {
+ return Err(format!("node_id_vec does not contain the correct set of nodes\nnode_id_vec: {:?}\nexpected: {:?}", node_id_vec, expected_nodes));
+ }
+
+ // Check that the assigned nodes are correct identifiers
+ // of nodes that are assigned a role
+ // and that role is not the role of a gateway nodes
+ for x in self.ring_assignment_data.iter() {
+ if *x as usize >= self.node_id_vec.len() {
+ return Err(format!(
+ "ring_assignment_data contains invalid node id {}",
+ *x
+ ));
+ }
+ let node = self.node_id_vec[*x as usize];
+ match self.roles.get(&node) {
+ Some(NodeRoleV(Some(x))) if x.capacity.is_some() => (),
+ _ => return Err("ring_assignment_data contains id of a gateway node".into()),
+ }
+ }
+
+ // Check that every partition is associated to distinct nodes
+ let zone_redundancy = self.effective_zone_redundancy();
+ let rf = self.replication_factor;
+ for p in 0..(1 << PARTITION_BITS) {
+ let nodes_of_p = self.ring_assignment_data[rf * p..rf * (p + 1)].to_vec();
+ if nodes_of_p.iter().unique().count() != rf {
+ return Err(format!("partition does not contain {} unique node ids", rf));
+ }
+ // Check that every partition is spread over at least zone_redundancy zones.
+ let zones_of_p = nodes_of_p
+ .iter()
+ .map(|n| self.expect_get_node_zone(&self.node_id_vec[*n as usize]))
+ .collect::<Vec<_>>();
+ if zones_of_p.iter().unique().count() < zone_redundancy {
+ return Err(format!(
+ "nodes of partition are in less than {} distinct zones",
+ zone_redundancy
+ ));
+ }
+ }
+
+ // Check that the nodes capacities is consistent with the stored partitions
+ let mut node_usage = vec![0; MAX_NODE_NUMBER];
+ for n in self.ring_assignment_data.iter() {
+ node_usage[*n as usize] += 1;
+ }
+ for (n, usage) in node_usage.iter().enumerate() {
+ if *usage > 0 {
+ let uuid = self.node_id_vec[n];
+ let partusage = usage * self.partition_size;
+ let nodecap = self.expect_get_node_capacity(&uuid);
+ if partusage > nodecap {
+ return Err(format!(
+ "node usage ({}) is bigger than node capacity ({})",
+ usage * self.partition_size,
+ nodecap
+ ));
+ }
+ }
+ }
+
+ // Check that the partition size stored is the one computed by the asignation
+ // algorithm.
+ let cl2 = self.clone();
+ let (_, zone_to_id) = cl2.generate_nongateway_zone_ids().unwrap();
+ match cl2.compute_optimal_partition_size(&zone_to_id, zone_redundancy) {
+ Ok(s) if s != self.partition_size => {
+ return Err(format!(
+ "partition_size ({}) is different than optimal value ({})",
+ self.partition_size, s
+ ))
+ }
+ Err(e) => return Err(format!("could not calculate optimal partition size: {}", e)),
+ _ => (),
+ }
+
+ Ok(())
+ }
+
+ // ================== updates to layout, internals ===================
+
+ pub(crate) fn calculate_next_version(
+ mut self,
+ staging: &LayoutStaging,
+ ) -> Result<(Self, Message), Error> {
+ self.version += 1;
+
+ self.roles.merge(&staging.roles);
+ self.roles.retain(|(_, _, v)| v.0.is_some());
+ self.parameters = *staging.parameters.get();
+
+ let msg = self.calculate_partition_assignment()?;
+
+ Ok((self, msg))
+ }
+
+ /// This function calculates a new partition-to-node assignment.
+ /// The computed assignment respects the node replication factor
+ /// and the zone redundancy parameter It maximizes the capacity of a
+ /// partition (assuming all partitions have the same size).
+ /// Among such optimal assignment, it minimizes the distance to
+ /// the former assignment (if any) to minimize the amount of
+ /// data to be moved.
+ /// Staged role changes must be merged with nodes roles before calling this function,
+ /// hence it must only be called from apply_staged_changes() and hence is not public.
+ fn calculate_partition_assignment(&mut self) -> Result<Message, Error> {
+ // We update the node ids, since the node role list might have changed with the
+ // changes in the layout. We retrieve the old_assignment reframed with new ids
+ let old_assignment_opt = self.update_node_id_vec()?;
+
+ let zone_redundancy = self.effective_zone_redundancy();
+
+ let mut msg = Message::new();
+ msg.push("==== COMPUTATION OF A NEW PARTITION ASSIGNATION ====".into());
+ msg.push("".into());
+ msg.push(format!(
+ "Partitions are \
+ replicated {} times on at least {} distinct zones.",
+ self.replication_factor, zone_redundancy
+ ));
+
+ // We generate for once numerical ids for the zones of non gateway nodes,
+ // to use them as indices in the flow graphs.
+ let (id_to_zone, zone_to_id) = self.generate_nongateway_zone_ids()?;
+
+ if self.nongateway_nodes().len() < self.replication_factor {
+ return Err(Error::Message(format!(
+ "The number of nodes with positive \
+ capacity ({}) is smaller than the replication factor ({}).",
+ self.nongateway_nodes().len(),
+ self.replication_factor
+ )));
+ }
+ if id_to_zone.len() < zone_redundancy {
+ return Err(Error::Message(format!(
+ "The number of zones with non-gateway \
+ nodes ({}) is smaller than the redundancy parameter ({})",
+ id_to_zone.len(),
+ zone_redundancy
+ )));
+ }
+
+ // We compute the optimal partition size
+ // Capacities should be given in a unit so that partition size is at least 100.
+ // In this case, integer rounding plays a marginal role in the percentages of
+ // optimality.
+ let partition_size = self.compute_optimal_partition_size(&zone_to_id, zone_redundancy)?;
+
+ msg.push("".into());
+ if old_assignment_opt.is_some() {
+ msg.push(format!(
+ "Optimal partition size: {} ({} in previous layout)",
+ ByteSize::b(partition_size).to_string_as(false),
+ ByteSize::b(self.partition_size).to_string_as(false)
+ ));
+ } else {
+ msg.push(format!(
+ "Optimal partition size: {}",
+ ByteSize::b(partition_size).to_string_as(false)
+ ));
+ }
+ // We write the partition size.
+ self.partition_size = partition_size;
+
+ if partition_size < 100 {
+ msg.push(
+ "WARNING: The partition size is low (< 100), make sure the capacities of your nodes are correct and are of at least a few MB"
+ .into(),
+ );
+ }
+
+ // We compute a first flow/assignment that is heuristically close to the previous
+ // assignment
+ let mut gflow =
+ self.compute_candidate_assignment(&zone_to_id, &old_assignment_opt, zone_redundancy)?;
+ if let Some(assoc) = &old_assignment_opt {
+ // We minimize the distance to the previous assignment.
+ self.minimize_rebalance_load(&mut gflow, &zone_to_id, assoc)?;
+ }
+
+ // We display statistics of the computation
+ msg.extend(self.output_stat(&gflow, &old_assignment_opt, &zone_to_id, &id_to_zone)?);
+
+ // We update the layout structure
+ self.update_ring_from_flow(id_to_zone.len(), &gflow)?;
+
+ if let Err(e) = self.check() {
+ return Err(Error::Message(
+ format!("Layout check returned an error: {}\nOriginal result of computation: <<<<\n{}\n>>>>", e, msg.join("\n"))
+ ));
+ }
+
+ Ok(msg)
+ }
+
+ /// The LwwMap of node roles might have changed. This function updates the node_id_vec
+ /// and returns the assignment given by ring, with the new indices of the nodes, and
+ /// None if the node is not present anymore.
+ /// We work with the assumption that only this function and calculate_new_assignment
+ /// do modify assignment_ring and node_id_vec.
+ fn update_node_id_vec(&mut self) -> Result<Option<Vec<Vec<usize>>>, Error> {
+ // (1) We compute the new node list
+ // Non gateway nodes should be coded on 8bits, hence they must be first in the list
+ // We build the new node ids
+ let new_non_gateway_nodes: Vec<Uuid> = self
+ .roles
+ .items()
+ .iter()
+ .filter(|(_, _, v)| matches!(&v.0, Some(r) if r.capacity.is_some()))
+ .map(|(k, _, _)| *k)
+ .collect();
+
+ if new_non_gateway_nodes.len() > MAX_NODE_NUMBER {
+ return Err(Error::Message(format!(
+ "There are more than {} non-gateway nodes in the new \
+ layout. This is not allowed.",
+ MAX_NODE_NUMBER
+ )));
+ }
+
+ let new_gateway_nodes: Vec<Uuid> = self
+ .roles
+ .items()
+ .iter()
+ .filter(|(_, _, v)| matches!(v, NodeRoleV(Some(r)) if r.capacity.is_none()))
+ .map(|(k, _, _)| *k)
+ .collect();
+
+ let old_node_id_vec = std::mem::take(&mut self.node_id_vec);
+
+ self.nongateway_node_count = new_non_gateway_nodes.len();
+ self.node_id_vec.clear();
+ self.node_id_vec.extend(new_non_gateway_nodes);
+ self.node_id_vec.extend(new_gateway_nodes);
+
+ let new_node_id_vec = &self.node_id_vec;
+
+ // (2) We retrieve the old association
+ // We rewrite the old association with the new indices. We only consider partition
+ // to node assignments where the node is still in use.
+ if self.ring_assignment_data.is_empty() {
+ // This is a new association
+ return Ok(None);
+ }
+
+ if self.ring_assignment_data.len() != NB_PARTITIONS * self.replication_factor {
+ return Err(Error::Message(
+ "The old assignment does not have a size corresponding to \
+ the old replication factor or the number of partitions."
+ .into(),
+ ));
+ }
+
+ // We build a translation table between the uuid and new ids
+ let mut uuid_to_new_id = HashMap::<Uuid, usize>::new();
+
+ // We add the indices of only the new non-gateway nodes that can be used in the
+ // association ring
+ for (i, uuid) in new_node_id_vec.iter().enumerate() {
+ uuid_to_new_id.insert(*uuid, i);
+ }
+
+ let mut old_assignment = vec![Vec::<usize>::new(); NB_PARTITIONS];
+ let rf = self.replication_factor;
+
+ for (p, old_assign_p) in old_assignment.iter_mut().enumerate() {
+ for old_id in &self.ring_assignment_data[p * rf..(p + 1) * rf] {
+ let uuid = old_node_id_vec[*old_id as usize];
+ if uuid_to_new_id.contains_key(&uuid) {
+ old_assign_p.push(uuid_to_new_id[&uuid]);
+ }
+ }
+ }
+
+ // We clear the ring assignemnt data
+ self.ring_assignment_data = Vec::<CompactNodeType>::new();
+
+ Ok(Some(old_assignment))
+ }
+
+ /// This function generates ids for the zone of the nodes appearing in
+ /// self.node_id_vec.
+ pub(crate) fn generate_nongateway_zone_ids(
+ &self,
+ ) -> Result<(Vec<String>, HashMap<String, usize>), Error> {
+ let mut id_to_zone = Vec::<String>::new();
+ let mut zone_to_id = HashMap::<String, usize>::new();
+
+ for uuid in self.nongateway_nodes().iter() {
+ let r = self.node_role(uuid).unwrap();
+ if !zone_to_id.contains_key(&r.zone) && r.capacity.is_some() {
+ zone_to_id.insert(r.zone.clone(), id_to_zone.len());
+ id_to_zone.push(r.zone.clone());
+ }
+ }
+ Ok((id_to_zone, zone_to_id))
+ }
+
+ /// This function computes by dichotomy the largest realizable partition size, given
+ /// the layout roles and parameters.
+ fn compute_optimal_partition_size(
+ &self,
+ zone_to_id: &HashMap<String, usize>,
+ zone_redundancy: usize,
+ ) -> Result<u64, Error> {
+ let empty_set = HashSet::<(usize, usize)>::new();
+ let mut g = self.generate_flow_graph(1, zone_to_id, &empty_set, zone_redundancy)?;
+ g.compute_maximal_flow()?;
+ if g.get_flow_value()? < (NB_PARTITIONS * self.replication_factor) as i64 {
+ return Err(Error::Message(
+ "The storage capacity of he cluster is to small. It is \
+ impossible to store partitions of size 1."
+ .into(),
+ ));
+ }
+
+ let mut s_down = 1;
+ let mut s_up = self.get_total_capacity();
+ while s_down + 1 < s_up {
+ g = self.generate_flow_graph(
+ (s_down + s_up) / 2,
+ zone_to_id,
+ &empty_set,
+ zone_redundancy,
+ )?;
+ g.compute_maximal_flow()?;
+ if g.get_flow_value()? < (NB_PARTITIONS * self.replication_factor) as i64 {
+ s_up = (s_down + s_up) / 2;
+ } else {
+ s_down = (s_down + s_up) / 2;
+ }
+ }
+
+ Ok(s_down)
+ }
+
+ fn generate_graph_vertices(nb_zones: usize, nb_nodes: usize) -> Vec<Vertex> {
+ let mut vertices = vec![Vertex::Source, Vertex::Sink];
+ for p in 0..NB_PARTITIONS {
+ vertices.push(Vertex::Pup(p));
+ vertices.push(Vertex::Pdown(p));
+ for z in 0..nb_zones {
+ vertices.push(Vertex::PZ(p, z));
+ }
+ }
+ for n in 0..nb_nodes {
+ vertices.push(Vertex::N(n));
+ }
+ vertices
+ }
+
+ /// Generates the graph to compute the maximal flow corresponding to the optimal
+ /// partition assignment.
+ /// exclude_assoc is the set of (partition, node) association that we are forbidden
+ /// to use (hence we do not add the corresponding edge to the graph). This parameter
+ /// is used to compute a first flow that uses only edges appearing in the previous
+ /// assignment. This produces a solution that heuristically should be close to the
+ /// previous one.
+ fn generate_flow_graph(
+ &self,
+ partition_size: u64,
+ zone_to_id: &HashMap<String, usize>,
+ exclude_assoc: &HashSet<(usize, usize)>,
+ zone_redundancy: usize,
+ ) -> Result<Graph<FlowEdge>, Error> {
+ let vertices =
+ LayoutVersion::generate_graph_vertices(zone_to_id.len(), self.nongateway_nodes().len());
+ let mut g = Graph::<FlowEdge>::new(&vertices);
+ let nb_zones = zone_to_id.len();
+ for p in 0..NB_PARTITIONS {
+ g.add_edge(Vertex::Source, Vertex::Pup(p), zone_redundancy as u64)?;
+ g.add_edge(
+ Vertex::Source,
+ Vertex::Pdown(p),
+ (self.replication_factor - zone_redundancy) as u64,
+ )?;
+ for z in 0..nb_zones {
+ g.add_edge(Vertex::Pup(p), Vertex::PZ(p, z), 1)?;
+ g.add_edge(
+ Vertex::Pdown(p),
+ Vertex::PZ(p, z),
+ self.replication_factor as u64,
+ )?;
+ }
+ }
+ for n in 0..self.nongateway_nodes().len() {
+ let node_capacity = self.expect_get_node_capacity(&self.node_id_vec[n]);
+ let node_zone = zone_to_id[self.expect_get_node_zone(&self.node_id_vec[n])];
+ g.add_edge(Vertex::N(n), Vertex::Sink, node_capacity / partition_size)?;
+ for p in 0..NB_PARTITIONS {
+ if !exclude_assoc.contains(&(p, n)) {
+ g.add_edge(Vertex::PZ(p, node_zone), Vertex::N(n), 1)?;
+ }
+ }
+ }
+ Ok(g)
+ }
+
+ /// This function computes a first optimal assignment (in the form of a flow graph).
+ fn compute_candidate_assignment(
+ &self,
+ zone_to_id: &HashMap<String, usize>,
+ prev_assign_opt: &Option<Vec<Vec<usize>>>,
+ zone_redundancy: usize,
+ ) -> Result<Graph<FlowEdge>, Error> {
+ // We list the (partition,node) associations that are not used in the
+ // previous assignment
+ let mut exclude_edge = HashSet::<(usize, usize)>::new();
+ if let Some(prev_assign) = prev_assign_opt {
+ let nb_nodes = self.nongateway_nodes().len();
+ for (p, prev_assign_p) in prev_assign.iter().enumerate() {
+ for n in 0..nb_nodes {
+ exclude_edge.insert((p, n));
+ }
+ for n in prev_assign_p.iter() {
+ exclude_edge.remove(&(p, *n));
+ }
+ }
+ }
+
+ // We compute the best flow using only the edges used in the previous assignment
+ let mut g = self.generate_flow_graph(
+ self.partition_size,
+ zone_to_id,
+ &exclude_edge,
+ zone_redundancy,
+ )?;
+ g.compute_maximal_flow()?;
+
+ // We add the excluded edges and compute the maximal flow with the full graph.
+ // The algorithm is such that it will start with the flow that we just computed
+ // and find ameliorating paths from that.
+ for (p, n) in exclude_edge.iter() {
+ let node_zone = zone_to_id[self.expect_get_node_zone(&self.node_id_vec[*n])];
+ g.add_edge(Vertex::PZ(*p, node_zone), Vertex::N(*n), 1)?;
+ }
+ g.compute_maximal_flow()?;
+ Ok(g)
+ }
+
+ /// This function updates the flow graph gflow to minimize the distance between
+ /// its corresponding assignment and the previous one
+ fn minimize_rebalance_load(
+ &self,
+ gflow: &mut Graph<FlowEdge>,
+ zone_to_id: &HashMap<String, usize>,
+ prev_assign: &[Vec<usize>],
+ ) -> Result<(), Error> {
+ // We define a cost function on the edges (pairs of vertices) corresponding
+ // to the distance between the two assignments.
+ let mut cost = CostFunction::new();
+ for (p, assoc_p) in prev_assign.iter().enumerate() {
+ for n in assoc_p.iter() {
+ let node_zone = zone_to_id[self.expect_get_node_zone(&self.node_id_vec[*n])];
+ cost.insert((Vertex::PZ(p, node_zone), Vertex::N(*n)), -1);
+ }
+ }
+
+ // We compute the maximal length of a simple path in gflow. It is used in the
+ // Bellman-Ford algorithm in optimize_flow_with_cost to set the number
+ // of iterations.
+ let nb_nodes = self.nongateway_nodes().len();
+ let path_length = 4 * nb_nodes;
+ gflow.optimize_flow_with_cost(&cost, path_length)?;
+
+ Ok(())
+ }
+
+ /// This function updates the assignment ring from the flow graph.
+ fn update_ring_from_flow(
+ &mut self,
+ nb_zones: usize,
+ gflow: &Graph<FlowEdge>,
+ ) -> Result<(), Error> {
+ self.ring_assignment_data = Vec::<CompactNodeType>::new();
+ for p in 0..NB_PARTITIONS {
+ for z in 0..nb_zones {
+ let assoc_vertex = gflow.get_positive_flow_from(Vertex::PZ(p, z))?;
+ for vertex in assoc_vertex.iter() {
+ if let Vertex::N(n) = vertex {
+ self.ring_assignment_data.push((*n).try_into().unwrap());
+ }
+ }
+ }
+ }
+
+ if self.ring_assignment_data.len() != NB_PARTITIONS * self.replication_factor {
+ return Err(Error::Message(
+ "Critical Error : the association ring we produced does not \
+ have the right size."
+ .into(),
+ ));
+ }
+ Ok(())
+ }
+
+ /// This function returns a message summing up the partition repartition of the new
+ /// layout, and other statistics of the partition assignment computation.
+ fn output_stat(
+ &self,
+ gflow: &Graph<FlowEdge>,
+ prev_assign_opt: &Option<Vec<Vec<usize>>>,
+ zone_to_id: &HashMap<String, usize>,
+ id_to_zone: &[String],
+ ) -> Result<Message, Error> {
+ let mut msg = Message::new();
+
+ let used_cap = self.partition_size * NB_PARTITIONS as u64 * self.replication_factor as u64;
+ let total_cap = self.get_total_capacity();
+ let percent_cap = 100.0 * (used_cap as f32) / (total_cap as f32);
+ msg.push(format!(
+ "Usable capacity / total cluster capacity: {} / {} ({:.1} %)",
+ ByteSize::b(used_cap).to_string_as(false),
+ ByteSize::b(total_cap).to_string_as(false),
+ percent_cap
+ ));
+ msg.push(format!(
+ "Effective capacity (replication factor {}): {}",
+ self.replication_factor,
+ ByteSize::b(used_cap / self.replication_factor as u64).to_string_as(false)
+ ));
+ if percent_cap < 80. {
+ msg.push("".into());
+ msg.push(
+ "If the percentage is too low, it might be that the \
+ cluster topology and redundancy constraints are forcing the use of nodes/zones with small \
+ storage capacities."
+ .into(),
+ );
+ msg.push(
+ "You might want to move storage capacity between zones or relax the redundancy constraint."
+ .into(),
+ );
+ msg.push(
+ "See the detailed statistics below and look for saturated nodes/zones.".into(),
+ );
+ }
+
+ // We define and fill in the following tables
+ let storing_nodes = self.nongateway_nodes();
+ let mut new_partitions = vec![0; storing_nodes.len()];
+ let mut stored_partitions = vec![0; storing_nodes.len()];
+
+ let mut new_partitions_zone = vec![0; id_to_zone.len()];
+ let mut stored_partitions_zone = vec![0; id_to_zone.len()];
+
+ for p in 0..NB_PARTITIONS {
+ for z in 0..id_to_zone.len() {
+ let pz_nodes = gflow.get_positive_flow_from(Vertex::PZ(p, z))?;
+ if !pz_nodes.is_empty() {
+ stored_partitions_zone[z] += 1;
+ if let Some(prev_assign) = prev_assign_opt {
+ let mut old_zones_of_p = Vec::<usize>::new();
+ for n in prev_assign[p].iter() {
+ old_zones_of_p
+ .push(zone_to_id[self.expect_get_node_zone(&self.node_id_vec[*n])]);
+ }
+ if !old_zones_of_p.contains(&z) {
+ new_partitions_zone[z] += 1;
+ }
+ }
+ }
+ for vert in pz_nodes.iter() {
+ if let Vertex::N(n) = *vert {
+ stored_partitions[n] += 1;
+ if let Some(prev_assign) = prev_assign_opt {
+ if !prev_assign[p].contains(&n) {
+ new_partitions[n] += 1;
+ }
+ }
+ }
+ }
+ }
+ }
+
+ if prev_assign_opt.is_none() {
+ new_partitions = stored_partitions.clone();
+ //new_partitions_zone = stored_partitions_zone.clone();
+ }
+
+ // We display the statistics
+
+ msg.push("".into());
+ if prev_assign_opt.is_some() {
+ let total_new_partitions: usize = new_partitions.iter().sum();
+ msg.push(format!(
+ "A total of {} new copies of partitions need to be \
+ transferred.",
+ total_new_partitions
+ ));
+ msg.push("".into());
+ }
+
+ let mut table = vec![];
+ for z in 0..id_to_zone.len() {
+ let mut nodes_of_z = Vec::<usize>::new();
+ for n in 0..storing_nodes.len() {
+ if self.expect_get_node_zone(&self.node_id_vec[n]) == id_to_zone[z] {
+ nodes_of_z.push(n);
+ }
+ }
+ let replicated_partitions: usize =
+ nodes_of_z.iter().map(|n| stored_partitions[*n]).sum();
+ table.push(format!(
+ "{}\tTags\tPartitions\tCapacity\tUsable capacity",
+ id_to_zone[z]
+ ));
+
+ let available_cap_z: u64 = self.partition_size * replicated_partitions as u64;
+ let mut total_cap_z = 0;
+ for n in nodes_of_z.iter() {
+ total_cap_z += self.expect_get_node_capacity(&self.node_id_vec[*n]);
+ }
+ let percent_cap_z = 100.0 * (available_cap_z as f32) / (total_cap_z as f32);
+
+ for n in nodes_of_z.iter() {
+ let available_cap_n = stored_partitions[*n] as u64 * self.partition_size;
+ let total_cap_n = self.expect_get_node_capacity(&self.node_id_vec[*n]);
+ let tags_n = (self.node_role(&self.node_id_vec[*n]).ok_or("<??>"))?.tags_string();
+ table.push(format!(
+ " {:?}\t{}\t{} ({} new)\t{}\t{} ({:.1}%)",
+ self.node_id_vec[*n],
+ tags_n,
+ stored_partitions[*n],
+ new_partitions[*n],
+ ByteSize::b(total_cap_n).to_string_as(false),
+ ByteSize::b(available_cap_n).to_string_as(false),
+ (available_cap_n as f32) / (total_cap_n as f32) * 100.0,
+ ));
+ }
+
+ table.push(format!(
+ " TOTAL\t\t{} ({} unique)\t{}\t{} ({:.1}%)",
+ replicated_partitions,
+ stored_partitions_zone[z],
+ //new_partitions_zone[z],
+ ByteSize::b(total_cap_z).to_string_as(false),
+ ByteSize::b(available_cap_z).to_string_as(false),
+ percent_cap_z
+ ));
+ table.push("".into());
+ }
+ msg.push(format_table::format_table_to_string(table));
+
+ Ok(msg)
+ }
+}