diff options
Diffstat (limited to 'src/rpc/graph_algo.rs')
-rw-r--r-- | src/rpc/graph_algo.rs | 440 |
1 files changed, 440 insertions, 0 deletions
diff --git a/src/rpc/graph_algo.rs b/src/rpc/graph_algo.rs new file mode 100644 index 00000000..1a809b80 --- /dev/null +++ b/src/rpc/graph_algo.rs @@ -0,0 +1,440 @@ + +//! This module deals with graph algorithms. +//! It is used in layout.rs to build the partition to node assignation. + +use rand::prelude::SliceRandom; +use std::cmp::{max, min}; +use std::collections::VecDeque; +use std::collections::HashMap; + +//Vertex data structures used in all the graphs used in layout.rs. +//usize parameters correspond to node/zone/partitions ids. +//To understand the vertex roles below, please refer to the formal description +//of the layout computation algorithm. +#[derive(Clone,Copy,Debug, PartialEq, Eq, Hash)] +pub enum Vertex{ + Source, + Pup(usize), //The vertex p+ of partition p + Pdown(usize), //The vertex p- of partition p + PZ(usize,usize), //The vertex corresponding to x_(partition p, zone z) + N(usize), //The vertex corresponding to node n + Sink +} + + +//Edge data structure for the flow algorithm. +//The graph is stored as an adjacency list +#[derive(Clone, Copy, Debug)] +pub struct FlowEdge { + cap: u32, //flow maximal capacity of the edge + flow: i32, //flow value on the edge + dest: usize, //destination vertex id + rev: usize, //index of the reversed edge (v, self) in the edge list of vertex v +} + +//Edge data structure for the detection of negative cycles. +//The graph is stored as a list of edges (u,v). +#[derive(Clone, Copy, Debug)] +pub struct WeightedEdge { + w: i32, //weight of the edge + dest: usize, +} + +pub trait Edge: Clone + Copy {} +impl Edge for FlowEdge {} +impl Edge for WeightedEdge {} + +//Struct for the graph structure. We do encapsulation here to be able to both +//provide user friendly Vertex enum to address vertices, and to use usize indices +//and Vec instead of HashMap in the graph algorithm to optimize execution speed. +pub struct Graph<E : Edge>{ + vertextoid : HashMap<Vertex , usize>, + idtovertex : Vec<Vertex>, + + graph : Vec< Vec<E> > +} + +pub type CostFunction = HashMap<(Vertex,Vertex), i32>; + +impl<E : Edge> Graph<E>{ + pub fn new(vertices : &[Vertex]) -> Self { + let mut map = HashMap::<Vertex, usize>::new(); + for i in 0..vertices.len() { + map.insert(vertices[i] , i); + } + return Graph::<E> { + vertextoid : map, + idtovertex: vertices.to_vec(), + graph : vec![Vec::< E >::new(); vertices.len() ] + } + } +} + +impl Graph<FlowEdge>{ + //This function adds a directed edge to the graph with capacity c, and the + //corresponding reversed edge with capacity 0. + pub fn add_edge(&mut self, u: Vertex, v:Vertex, c: u32) -> Result<(), String>{ + if !self.vertextoid.contains_key(&u) || !self.vertextoid.contains_key(&v) { + return Err("The graph does not contain the provided vertex.".to_string()); + } + let idu = self.vertextoid[&u]; + let idv = self.vertextoid[&v]; + let rev_u = self.graph[idu].len(); + let rev_v = self.graph[idv].len(); + self.graph[idu].push( FlowEdge{cap: c , dest: idv , flow: 0, rev : rev_v} ); + self.graph[idv].push( FlowEdge{cap: 0 , dest: idu , flow: 0, rev : rev_u} ); + Ok(()) + } + + //This function returns the list of vertices that receive a positive flow from + //vertex v. + pub fn get_positive_flow_from(&self , v:Vertex) -> Result< Vec<Vertex> , String>{ + if !self.vertextoid.contains_key(&v) { + return Err("The graph does not contain the provided vertex.".to_string()); + } + let idv = self.vertextoid[&v]; + let mut result = Vec::<Vertex>::new(); + for edge in self.graph[idv].iter() { + if edge.flow > 0 { + result.push(self.idtovertex[edge.dest]); + } + } + return Ok(result); + } + + + //This function returns the value of the flow incoming to v. + pub fn get_inflow(&self , v:Vertex) -> Result< i32 , String>{ + if !self.vertextoid.contains_key(&v) { + return Err("The graph does not contain the provided vertex.".to_string()); + } + let idv = self.vertextoid[&v]; + let mut result = 0; + for edge in self.graph[idv].iter() { + result += max(0,self.graph[edge.dest][edge.rev].flow); + } + return Ok(result); + } + + //This function returns the value of the flow outgoing from v. + pub fn get_outflow(&self , v:Vertex) -> Result< i32 , String>{ + if !self.vertextoid.contains_key(&v) { + return Err("The graph does not contain the provided vertex.".to_string()); + } + let idv = self.vertextoid[&v]; + let mut result = 0; + for edge in self.graph[idv].iter() { + result += max(0,edge.flow); + } + return Ok(result); + } + + //This function computes the flow total value by computing the outgoing flow + //from the source. + pub fn get_flow_value(&mut self) -> Result<i32, String> { + return self.get_outflow(Vertex::Source); + } + + //This function shuffles the order of the edge lists. It keeps the ids of the + //reversed edges consistent. + fn shuffle_edges(&mut self) { + let mut rng = rand::thread_rng(); + for i in 0..self.graph.len() { + self.graph[i].shuffle(&mut rng); + //We need to update the ids of the reverse edges. + for j in 0..self.graph[i].len() { + let target_v = self.graph[i][j].dest; + let target_rev = self.graph[i][j].rev; + self.graph[target_v][target_rev].rev = j; + } + } + } + + //Computes an upper bound of the flow n the graph + pub fn flow_upper_bound(&self) -> u32{ + let idsource = self.vertextoid[&Vertex::Source]; + let mut flow_upper_bound = 0; + for edge in self.graph[idsource].iter(){ + flow_upper_bound += edge.cap; + } + return flow_upper_bound; + } + + //This function computes the maximal flow using Dinic's algorithm. It starts with + //the flow values already present in the graph. So it is possible to add some edge to + //the graph, compute a flow, add other edges, update the flow. + pub fn compute_maximal_flow(&mut self) -> Result<(), String> { + if !self.vertextoid.contains_key(&Vertex::Source) { + return Err("The graph does not contain a source.".to_string()); + } + if !self.vertextoid.contains_key(&Vertex::Sink) { + return Err("The graph does not contain a sink.".to_string()); + } + + let idsource = self.vertextoid[&Vertex::Source]; + let idsink = self.vertextoid[&Vertex::Sink]; + + let nb_vertices = self.graph.len(); + + let flow_upper_bound = self.flow_upper_bound(); + + //To ensure the dispersion of the associations generated by the + //assignation, we shuffle the neighbours of the nodes. Hence, + //the vertices do not consider their neighbours in the same order. + self.shuffle_edges(); + + //We run Dinic's max flow algorithm + loop { + //We build the level array from Dinic's algorithm. + let mut level = vec![None; nb_vertices]; + + let mut fifo = VecDeque::new(); + fifo.push_back((idsource, 0)); + while !fifo.is_empty() { + if let Some((id, lvl)) = fifo.pop_front() { + if level[id] == None { //it means id has not yet been reached + level[id] = Some(lvl); + for edge in self.graph[id].iter() { + if edge.cap as i32 - edge.flow > 0 { + fifo.push_back((edge.dest, lvl + 1)); + } + } + } + } + } + if level[idsink] == None { + //There is no residual flow + break; + } + + //Now we run DFS respecting the level array + let mut next_nbd = vec![0; nb_vertices]; + let mut lifo = VecDeque::new(); + + lifo.push_back((idsource, flow_upper_bound)); + + while let Some((id_tmp, f_tmp)) = lifo.back() { + let id = *id_tmp; + let f = *f_tmp; + if id == idsink { + //The DFS reached the sink, we can add a + //residual flow. + lifo.pop_back(); + while !lifo.is_empty() { + if let Some((id, _)) = lifo.pop_back() { + let nbd = next_nbd[id]; + self.graph[id][nbd].flow += f as i32; + let id_rev = self.graph[id][nbd].dest; + let nbd_rev = self.graph[id][nbd].rev; + self.graph[id_rev][nbd_rev].flow -= f as i32; + } + } + lifo.push_back((idsource, flow_upper_bound)); + continue; + } + //else we did not reach the sink + let nbd = next_nbd[id]; + if nbd >= self.graph[id].len() { + //There is nothing to explore from id anymore + lifo.pop_back(); + if let Some((parent, _)) = lifo.back() { + next_nbd[*parent] += 1; + } + continue; + } + //else we can try to send flow from id to its nbd + let new_flow = min(f, self.graph[id][nbd].cap - self.graph[id][nbd].flow as u32 ); + if let (Some(lvldest), Some(lvlid)) = + (level[self.graph[id][nbd].dest], level[id]){ + if lvldest <= lvlid || new_flow == 0 { + //We cannot send flow to nbd. + next_nbd[id] += 1; + continue; + } + } + //otherwise, we send flow to nbd. + lifo.push_back((self.graph[id][nbd].dest, new_flow)); + } + } + Ok(()) + } + + //This function takes a flow, and a cost function on the edges, and tries to find an + // equivalent flow with a better cost, by finding improving overflow cycles. It uses + // as subroutine the Bellman Ford algorithm run up to path_length. + // We assume that the cost of edge (u,v) is the opposite of the cost of (v,u), and only + // one needs to be present in the cost function. + pub fn optimize_flow_with_cost(&mut self , cost: &CostFunction, path_length: usize ) + -> Result<(),String>{ + + //We build the weighted graph g where we will look for negative cycle + let mut gf = self.build_cost_graph(cost)?; + let mut cycles = gf.list_negative_cycles(path_length); + while cycles.len() > 0 { + //we enumerate negative cycles + for c in cycles.iter(){ + for i in 0..c.len(){ + //We add one flow unit to the edge (u,v) of cycle c + let idu = self.vertextoid[&c[i]]; + let idv = self.vertextoid[&c[(i+1)%c.len()]]; + for j in 0..self.graph[idu].len(){ + //since idu appears at most once in the cycles, we enumerate every + //edge at most once. + let edge = self.graph[idu][j]; + if edge.dest == idv { + self.graph[idu][j].flow += 1; + self.graph[idv][edge.rev].flow -=1; + break; + } + } + } + } + + gf = self.build_cost_graph(cost)?; + cycles = gf.list_negative_cycles(path_length); + } + return Ok(()); + } + + //Construct the weighted graph G_f from the flow and the cost function + fn build_cost_graph(&self , cost: &CostFunction) -> Result<Graph<WeightedEdge>,String>{ + + let mut g = Graph::<WeightedEdge>::new(&self.idtovertex); + let nb_vertices = self.idtovertex.len(); + for i in 0..nb_vertices { + for edge in self.graph[i].iter() { + if edge.cap as i32 -edge.flow > 0 { + //It is possible to send overflow through this edge + let u = self.idtovertex[i]; + let v = self.idtovertex[edge.dest]; + if cost.contains_key(&(u,v)) { + g.add_edge(u,v, cost[&(u,v)])?; + } + else if cost.contains_key(&(v,u)) { + g.add_edge(u,v, -cost[&(v,u)])?; + } + else{ + g.add_edge(u,v, 0)?; + } + } + } + } + return Ok(g); + + } + + +} + +impl Graph<WeightedEdge>{ + //This function adds a single directed weighted edge to the graph. + pub fn add_edge(&mut self, u: Vertex, v:Vertex, w: i32) -> Result<(), String>{ + if !self.vertextoid.contains_key(&u) || !self.vertextoid.contains_key(&v) { + return Err("The graph does not contain the provided vertex.".to_string()); + } + let idu = self.vertextoid[&u]; + let idv = self.vertextoid[&v]; + self.graph[idu].push( WeightedEdge{w: w , dest: idv} ); + Ok(()) + } + + //This function lists the negative cycles it manages to find after path_length + //iterations of the main loop of the Bellman-Ford algorithm. For the classical + //algorithm, path_length needs to be equal to the number of vertices. However, + //for particular graph structures like our case, the algorithm is still correct + //when path_length is the length of the longest possible simple path. + //See the formal description of the algorithm for more details. + fn list_negative_cycles(&self, path_length: usize) -> Vec< Vec<Vertex> > { + + let nb_vertices = self.graph.len(); + + //We start with every vertex at distance 0 of some imaginary extra -1 vertex. + let mut distance = vec![0 ; nb_vertices]; + //The prev vector collects for every vertex from where does the shortest path come + let mut prev = vec![None; nb_vertices]; + + for _ in 0..path_length +1 { + for id in 0..nb_vertices{ + for e in self.graph[id].iter(){ + if distance[id] + e.w < distance[e.dest] { + distance[e.dest] = distance[id] + e.w; + prev[e.dest] = Some(id); + } + } + } + } + + //If self.graph contains a negative cycle, then at this point the graph described + //by prev (which is a directed 1-forest/functional graph) + //must contain a cycle. We list the cycles of prev. + let cycles_prev = cycles_of_1_forest(&prev); + + //Remark that the cycle in prev is in the reverse order compared to the cycle + //in the graph. Thus the .rev(). + return cycles_prev.iter().map(|cycle| cycle.iter().rev().map( + |id| self.idtovertex[*id] + ).collect() ).collect(); + } + +} + + +//This function returns the list of cycles of a directed 1 forest. It does not +//check for the consistency of the input. +fn cycles_of_1_forest(forest: &[Option<usize>]) -> Vec<Vec<usize>> { + let mut cycles = Vec::<Vec::<usize>>::new(); + let mut time_of_discovery = vec![None; forest.len()]; + + for t in 0..forest.len(){ + let mut id = t; + //while we are on a valid undiscovered node + while time_of_discovery[id] == None { + time_of_discovery[id] = Some(t); + if let Some(i) = forest[id] { + id = i; + } + else{ + break; + } + } + if forest[id] != None && time_of_discovery[id] == Some(t) { + //We discovered an id that we explored at this iteration t. + //It means we are on a cycle + let mut cy = vec![id; 1]; + let id2 = id; + while let Some(id2) = forest[id2] { + if id2 != id { + cy.push(id2); + } + else { + break; + } + } + cycles.push(cy); + } + } + return cycles; +} + + +//==================================================================================== +//==================================================================================== +//==================================================================================== +//==================================================================================== +//==================================================================================== +//==================================================================================== + + +#[cfg(test)] +mod tests { + use super::*; + + #[test] + fn test_flow() { + let left_vec = vec![3; 8]; + let right_vec = vec![0, 4, 8, 4, 8]; + //There are asserts in the function that computes the flow + } + + //maybe add tests relative to the matching optilization ? +} |