aboutsummaryrefslogtreecommitdiff
path: root/src/util/bipartite.rs
diff options
context:
space:
mode:
authorMendes <mendes.oulamara@pm.me>2022-09-21 14:39:59 +0200
committerMendes <mendes.oulamara@pm.me>2022-09-21 14:39:59 +0200
commit7f3249a23770fd4da981c2ecb1126da97e9b4ca5 (patch)
tree93d3dec24948a8dcd5cf42b2889f67c414a9bf42 /src/util/bipartite.rs
parentc4adbeed515c571369453d23c7f1d84b1db994ec (diff)
downloadgarage-7f3249a23770fd4da981c2ecb1126da97e9b4ca5.tar.gz
garage-7f3249a23770fd4da981c2ecb1126da97e9b4ca5.zip
New version of the algorithm that calculate the layout.
It takes as paramters the replication factor and the zone redundancy, computes the largest partition size reachable with these constraints, and among the possible assignation with this partition size, it computes the one that moves the least number of partitions compared to the previous assignation. This computation uses graph algorithms defined in graph_algo.rs
Diffstat (limited to 'src/util/bipartite.rs')
-rw-r--r--src/util/bipartite.rs363
1 files changed, 0 insertions, 363 deletions
diff --git a/src/util/bipartite.rs b/src/util/bipartite.rs
deleted file mode 100644
index 1e1e9caa..00000000
--- a/src/util/bipartite.rs
+++ /dev/null
@@ -1,363 +0,0 @@
-/*
- * This module deals with graph algorithm in complete bipartite
- * graphs. It is used in layout.rs to build the partition to node
- * assignation.
- * */
-
-use rand::prelude::SliceRandom;
-use std::cmp::{max, min};
-use std::collections::VecDeque;
-
-//Graph data structure for the flow algorithm.
-#[derive(Clone, Copy, Debug)]
-struct EdgeFlow {
- c: i32,
- flow: i32,
- v: usize,
- rev: usize,
-}
-
-//Graph data structure for the detection of positive cycles.
-#[derive(Clone, Copy, Debug)]
-struct WeightedEdge {
- w: i32,
- u: usize,
- v: usize,
-}
-
-/* This function takes two matchings (old_match and new_match) in a
- * complete bipartite graph. It returns a matching that has the
- * same degree as new_match at every vertex, and that is as close
- * as possible to old_match.
- * */
-pub fn optimize_matching(
- old_match: &[Vec<usize>],
- new_match: &[Vec<usize>],
- nb_right: usize,
-) -> Vec<Vec<usize>> {
- let nb_left = old_match.len();
- let ed = WeightedEdge { w: -1, u: 0, v: 0 };
- let mut edge_vec = vec![ed; nb_left * nb_right];
-
- //We build the complete bipartite graph structure, represented
- //by the list of all edges.
- for i in 0..nb_left {
- for j in 0..nb_right {
- edge_vec[i * nb_right + j].u = i;
- edge_vec[i * nb_right + j].v = nb_left + j;
- }
- }
-
- for i in 0..edge_vec.len() {
- //We add the old matchings
- if old_match[edge_vec[i].u].contains(&(edge_vec[i].v - nb_left)) {
- edge_vec[i].w *= -1;
- }
- //We add the new matchings
- if new_match[edge_vec[i].u].contains(&(edge_vec[i].v - nb_left)) {
- (edge_vec[i].u, edge_vec[i].v) = (edge_vec[i].v, edge_vec[i].u);
- edge_vec[i].w *= -1;
- }
- }
- //Now edge_vec is a graph where edges are oriented LR if we
- //can add them to new_match, and RL otherwise. If
- //adding/removing them makes the matching closer to old_match
- //they have weight 1; and -1 otherwise.
-
- //We shuffle the edge list so that there is no bias depending in
- //partitions/zone label in the triplet dispersion
- let mut rng = rand::thread_rng();
- edge_vec.shuffle(&mut rng);
-
- //Discovering and flipping a cycle with positive weight in this
- //graph will make the matching closer to old_match.
- //We use Bellman Ford algorithm to discover positive cycles
- while let Some(cycle) = positive_cycle(&edge_vec, nb_left, nb_right) {
- for i in cycle {
- //We flip the edges of the cycle.
- (edge_vec[i].u, edge_vec[i].v) = (edge_vec[i].v, edge_vec[i].u);
- edge_vec[i].w *= -1;
- }
- }
-
- //The optimal matching is build from the graph structure.
- let mut matching = vec![Vec::<usize>::new(); nb_left];
- for e in edge_vec {
- if e.u > e.v {
- matching[e.v].push(e.u - nb_left);
- }
- }
- matching
-}
-
-//This function finds a positive cycle in a bipartite wieghted graph.
-fn positive_cycle(
- edge_vec: &[WeightedEdge],
- nb_left: usize,
- nb_right: usize,
-) -> Option<Vec<usize>> {
- let nb_side_min = min(nb_left, nb_right);
- let nb_vertices = nb_left + nb_right;
- let weight_lowerbound = -((nb_left + nb_right) as i32) - 1;
- let mut accessed = vec![false; nb_left];
-
- //We try to find a positive cycle accessible from the left
- //vertex i.
- for i in 0..nb_left {
- if accessed[i] {
- continue;
- }
- let mut weight = vec![weight_lowerbound; nb_vertices];
- let mut prev = vec![edge_vec.len(); nb_vertices];
- weight[i] = 0;
- //We compute largest weighted paths from i.
- //Since the graph is bipartite, any simple cycle has length
- //at most 2*nb_side_min. In the general Bellman-Ford
- //algorithm, the bound here is the number of vertices. Since
- //the number of partitions can be much larger than the
- //number of nodes, we optimize that.
- for _ in 0..(2 * nb_side_min) {
- for (j, e) in edge_vec.iter().enumerate() {
- if weight[e.v] < weight[e.u] + e.w {
- weight[e.v] = weight[e.u] + e.w;
- prev[e.v] = j;
- }
- }
- }
- //We update the accessed table
- for i in 0..nb_left {
- if weight[i] > weight_lowerbound {
- accessed[i] = true;
- }
- }
- //We detect positive cycle
- for e in edge_vec {
- if weight[e.v] < weight[e.u] + e.w {
- //it means e is on a path branching from a positive cycle
- let mut was_seen = vec![false; nb_vertices];
- let mut curr = e.u;
- //We track back with prev until we reach the cycle.
- while !was_seen[curr] {
- was_seen[curr] = true;
- curr = edge_vec[prev[curr]].u;
- }
- //Now curr is on the cycle. We collect the edges ids.
- let mut cycle = vec![prev[curr]];
- let mut cycle_vert = edge_vec[prev[curr]].u;
- while cycle_vert != curr {
- cycle.push(prev[cycle_vert]);
- cycle_vert = edge_vec[prev[cycle_vert]].u;
- }
-
- return Some(cycle);
- }
- }
- }
-
- None
-}
-
-// This function takes two arrays of capacity and computes the
-// maximal matching in the complete bipartite graph such that the
-// left vertex i is matched to left_cap_vec[i] right vertices, and
-// the right vertex j is matched to right_cap_vec[j] left vertices.
-// To do so, we use Dinic's maximum flow algorithm.
-pub fn dinic_compute_matching(left_cap_vec: Vec<u32>, right_cap_vec: Vec<u32>) -> Vec<Vec<usize>> {
- let mut graph = Vec::<Vec<EdgeFlow>>::new();
- let ed = EdgeFlow {
- c: 0,
- flow: 0,
- v: 0,
- rev: 0,
- };
-
- // 0 will be the source
- graph.push(vec![ed; left_cap_vec.len()]);
- for (i, c) in left_cap_vec.iter().enumerate() {
- graph[0][i].c = *c as i32;
- graph[0][i].v = i + 2;
- graph[0][i].rev = 0;
- }
-
- //1 will be the sink
- graph.push(vec![ed; right_cap_vec.len()]);
- for (i, c) in right_cap_vec.iter().enumerate() {
- graph[1][i].c = *c as i32;
- graph[1][i].v = i + 2 + left_cap_vec.len();
- graph[1][i].rev = 0;
- }
-
- //we add left vertices
- for i in 0..left_cap_vec.len() {
- graph.push(vec![ed; 1 + right_cap_vec.len()]);
- graph[i + 2][0].c = 0; //directed
- graph[i + 2][0].v = 0;
- graph[i + 2][0].rev = i;
-
- for j in 0..right_cap_vec.len() {
- graph[i + 2][j + 1].c = 1;
- graph[i + 2][j + 1].v = 2 + left_cap_vec.len() + j;
- graph[i + 2][j + 1].rev = i + 1;
- }
- }
-
- //we add right vertices
- for i in 0..right_cap_vec.len() {
- let lft_ln = left_cap_vec.len();
- graph.push(vec![ed; 1 + lft_ln]);
- graph[i + lft_ln + 2][0].c = graph[1][i].c;
- graph[i + lft_ln + 2][0].v = 1;
- graph[i + lft_ln + 2][0].rev = i;
-
- for j in 0..left_cap_vec.len() {
- graph[i + 2 + lft_ln][j + 1].c = 0; //directed
- graph[i + 2 + lft_ln][j + 1].v = j + 2;
- graph[i + 2 + lft_ln][j + 1].rev = i + 1;
- }
- }
-
- //To ensure the dispersion of the triplets generated by the
- //assignation, we shuffle the neighbours of the nodes. Hence,
- //left vertices do not consider the right ones in the same order.
- let mut rng = rand::thread_rng();
- for i in 0..graph.len() {
- graph[i].shuffle(&mut rng);
- //We need to update the ids of the reverse edges.
- for j in 0..graph[i].len() {
- let target_v = graph[i][j].v;
- let target_rev = graph[i][j].rev;
- graph[target_v][target_rev].rev = j;
- }
- }
-
- let nb_vertices = graph.len();
-
- //We run Dinic's max flow algorithm
- loop {
- //We build the level array from Dinic's algorithm.
- let mut level = vec![-1; nb_vertices];
-
- let mut fifo = VecDeque::new();
- fifo.push_back((0, 0));
- while !fifo.is_empty() {
- if let Some((id, lvl)) = fifo.pop_front() {
- if level[id] == -1 {
- level[id] = lvl;
- for e in graph[id].iter() {
- if e.c - e.flow > 0 {
- fifo.push_back((e.v, lvl + 1));
- }
- }
- }
- }
- }
- if level[1] == -1 {
- //There is no residual flow
- break;
- }
-
- //Now we run DFS respecting the level array
- let mut next_nbd = vec![0; nb_vertices];
- let mut lifo = VecDeque::new();
-
- let flow_upper_bound = if let Some(x) = left_cap_vec.iter().max() {
- *x as i32
- } else {
- panic!();
- };
-
- lifo.push_back((0, flow_upper_bound));
-
- while let Some((id_tmp, f_tmp)) = lifo.back() {
- let id = *id_tmp;
- let f = *f_tmp;
- if id == 1 {
- //The DFS reached the sink, we can add a
- //residual flow.
- lifo.pop_back();
- while !lifo.is_empty() {
- if let Some((id, _)) = lifo.pop_back() {
- let nbd = next_nbd[id];
- graph[id][nbd].flow += f;
- let id_v = graph[id][nbd].v;
- let nbd_v = graph[id][nbd].rev;
- graph[id_v][nbd_v].flow -= f;
- }
- }
- lifo.push_back((0, flow_upper_bound));
- continue;
- }
- //else we did not reach the sink
- let nbd = next_nbd[id];
- if nbd >= graph[id].len() {
- //There is nothing to explore from id anymore
- lifo.pop_back();
- if let Some((parent, _)) = lifo.back() {
- next_nbd[*parent] += 1;
- }
- continue;
- }
- //else we can try to send flow from id to its nbd
- let new_flow = min(f, graph[id][nbd].c - graph[id][nbd].flow);
- if level[graph[id][nbd].v] <= level[id] || new_flow == 0 {
- //We cannot send flow to nbd.
- next_nbd[id] += 1;
- continue;
- }
- //otherwise, we send flow to nbd.
- lifo.push_back((graph[id][nbd].v, new_flow));
- }
- }
-
- //We return the association
- let assoc_table = (0..left_cap_vec.len())
- .map(|id| {
- graph[id + 2]
- .iter()
- .filter(|e| e.flow > 0)
- .map(|e| e.v - 2 - left_cap_vec.len())
- .collect()
- })
- .collect();
-
- //consistency check
-
- //it is a flow
- for i in 3..graph.len() {
- assert!(graph[i].iter().map(|e| e.flow).sum::<i32>() == 0);
- for e in graph[i].iter() {
- assert!(e.flow + graph[e.v][e.rev].flow == 0);
- }
- }
-
- //it solves the matching problem
- for i in 0..left_cap_vec.len() {
- assert!(left_cap_vec[i] as i32 == graph[i + 2].iter().map(|e| max(0, e.flow)).sum::<i32>());
- }
- for i in 0..right_cap_vec.len() {
- assert!(
- right_cap_vec[i] as i32
- == graph[i + 2 + left_cap_vec.len()]
- .iter()
- .map(|e| max(0, e.flow))
- .sum::<i32>()
- );
- }
-
- assoc_table
-}
-
-#[cfg(test)]
-mod tests {
- use super::*;
-
- #[test]
- fn test_flow() {
- let left_vec = vec![3; 8];
- let right_vec = vec![0, 4, 8, 4, 8];
- //There are asserts in the function that computes the flow
- let _ = dinic_compute_matching(left_vec, right_vec);
- }
-
- //maybe add tests relative to the matching optilization ?
-}