aboutsummaryrefslogtreecommitdiff
path: root/src/table
diff options
context:
space:
mode:
authorAlex Auvolat <alex@adnab.me>2023-11-16 16:41:45 +0100
committerAlex Auvolat <alex@adnab.me>2023-11-16 16:41:45 +0100
commit3ecd14b9f6202ad3c5513c6ad7422bd408134002 (patch)
tree74d081ebc64dac8416affc7b4bacef54e4920c09 /src/table
parent22f38808e744ea5b30ad771fcb344a29579b56d4 (diff)
downloadgarage-3ecd14b9f6202ad3c5513c6ad7422bd408134002.tar.gz
garage-3ecd14b9f6202ad3c5513c6ad7422bd408134002.zip
table: implement write sets for insert_many
Diffstat (limited to 'src/table')
-rw-r--r--src/table/table.rs157
1 files changed, 127 insertions, 30 deletions
diff --git a/src/table/table.rs b/src/table/table.rs
index 5ec9eb0a..7d1ff31c 100644
--- a/src/table/table.rs
+++ b/src/table/table.rs
@@ -143,7 +143,7 @@ impl<F: TableSchema, R: TableReplication> Table<F, R> {
self.data.queue_insert(tx, e)
}
- pub async fn insert_many<I, IE>(&self, entries: I) -> Result<(), Error>
+ pub async fn insert_many<I, IE>(self: &Arc<Self>, entries: I) -> Result<(), Error>
where
I: IntoIterator<Item = IE> + Send + Sync,
IE: Borrow<F::E> + Send + Sync,
@@ -161,52 +161,149 @@ impl<F: TableSchema, R: TableReplication> Table<F, R> {
Ok(())
}
- async fn insert_many_internal<I, IE>(&self, entries: I) -> Result<(), Error>
+ async fn insert_many_internal<I, IE>(self: &Arc<Self>, entries: I) -> Result<(), Error>
where
I: IntoIterator<Item = IE> + Send + Sync,
IE: Borrow<F::E> + Send + Sync,
{
- let mut call_list: HashMap<_, Vec<_>> = HashMap::new();
-
+ // The different items will have to be stored on possibly different nodes.
+ // We will here batch all items into a single request for each concerned
+ // node, with all of the entries it must store within that request.
+ // Each entry has to be saved to a specific list of "write sets", i.e. a set
+ // of node within wich a quorum must be achieved. In normal operation, there
+ // is a single write set which corresponds to the quorum in the current
+ // cluster layout, but when the layout is updated, multiple write sets might
+ // have to be handled at once. Here, since we are sending many entries, we
+ // will have to handle many write sets in all cases. The algorihtm is thus
+ // to send one request to each node with all the items it must save,
+ // and keep track of the OK responses within each write set: if for all sets
+ // a quorum of nodes has answered OK, then the insert has succeeded and
+ // consistency properties (read-after-write) are preserved.
+
+ // Some code here might feel redundant with RpcHelper::try_write_many_sets,
+ // but I think deduplicating could lead to more spaghetti instead of
+ // improving the readability, so I'm leaving as is.
+
+ let quorum = self.data.replication.write_quorum();
+
+ // Serialize all entries and compute the write sets for each of them.
+ // In the case of sharded table replication, this also takes an "ack lock"
+ // to the layout manager to avoid ack'ing newer versions which are not
+ // taken into account by writes in progress (the ack can happen later, once
+ // all writes that didn't take the new layout into account are finished).
+ // These locks are released when entries_vec is dropped, i.e. when this
+ // function returns.
+ let mut entries_vec = Vec::new();
for entry in entries.into_iter() {
let entry = entry.borrow();
let hash = entry.partition_key().hash();
- // TODO: use write sets
- let who = self.data.replication.storage_nodes(&hash);
+ let write_sets = self.data.replication.write_sets(&hash);
let e_enc = Arc::new(ByteBuf::from(entry.encode()?));
- for node in who {
- call_list.entry(node).or_default().push(e_enc.clone());
+ entries_vec.push((write_sets, e_enc));
+ }
+
+ // Compute a deduplicated list of all of the write sets,
+ // and compute an index from each node to the position of the sets in which
+ // it takes part, to optimize the detection of a quorum.
+ let mut write_sets = entries_vec
+ .iter()
+ .map(|(wss, _)| wss.as_ref().iter().map(|ws| ws.as_slice()))
+ .flatten()
+ .collect::<Vec<&[Uuid]>>();
+ write_sets.sort();
+ write_sets.dedup();
+ let mut write_set_index = HashMap::<&Uuid, Vec<usize>>::new();
+ for (i, write_set) in write_sets.iter().enumerate() {
+ for node in write_set.iter() {
+ write_set_index.entry(node).or_default().push(i);
}
}
- let call_futures = call_list.drain().map(|(node, entries)| async move {
- let rpc = TableRpc::<F>::Update(entries);
-
- let resp = self
- .system
- .rpc_helper()
- .call(
- &self.endpoint,
- node,
- rpc,
- RequestStrategy::with_priority(PRIO_NORMAL),
- )
- .await?;
- Ok::<_, Error>((node, resp))
+ // Build a map of all nodes to the entries that must be sent to that node.
+ let mut call_list: HashMap<Uuid, Vec<_>> = HashMap::new();
+ for (write_sets, entry_enc) in entries_vec.iter() {
+ for write_set in write_sets.as_ref().iter() {
+ for node in write_set.iter() {
+ call_list.entry(*node).or_default().push(entry_enc.clone())
+ }
+ }
+ }
+
+ // Build futures to actually perform each of the corresponding RPC calls
+ let call_count = call_list.len();
+ let call_futures = call_list.into_iter().map(|(node, entries)| {
+ let this = self.clone();
+ let tracer = opentelemetry::global::tracer("garage");
+ let span = tracer.start(format!("RPC to {:?}", node));
+ let fut = async move {
+ let rpc = TableRpc::<F>::Update(entries);
+ let resp = this
+ .system
+ .rpc_helper()
+ .call(
+ &this.endpoint,
+ node,
+ rpc,
+ RequestStrategy::with_priority(PRIO_NORMAL).with_quorum(quorum),
+ )
+ .await;
+ (node, resp)
+ };
+ fut.with_context(Context::current_with_span(span))
});
+
+ // Run all requests in parallel thanks to FuturesUnordered, and collect results.
let mut resps = call_futures.collect::<FuturesUnordered<_>>();
+ let mut set_counters = vec![(0, 0); write_sets.len()];
+ let mut successes = 0;
let mut errors = vec![];
- while let Some(resp) = resps.next().await {
- if let Err(e) = resp {
- errors.push(e);
+ while let Some((node, resp)) = resps.next().await {
+ match resp {
+ Ok(_) => {
+ successes += 1;
+ for set in write_set_index.get(&node).unwrap().iter() {
+ set_counters[*set].0 += 1;
+ }
+ }
+ Err(e) => {
+ errors.push(e);
+ for set in write_set_index.get(&node).unwrap().iter() {
+ set_counters[*set].1 += 1;
+ }
+ }
+ }
+
+ if set_counters.iter().all(|(ok_cnt, _)| *ok_cnt >= quorum) {
+ // Success
+
+ // Continue all other requests in background
+ tokio::spawn(async move {
+ resps.collect::<Vec<(Uuid, Result<_, _>)>>().await;
+ });
+
+ return Ok(());
+ }
+
+ if set_counters
+ .iter()
+ .enumerate()
+ .any(|(i, (_, err_cnt))| err_cnt + quorum > write_sets[i].len())
+ {
+ // Too many errors in this set, we know we won't get a quorum
+ break;
}
}
- if errors.len() > self.data.replication.max_write_errors() {
- Err(Error::Message("Too many errors".into()))
- } else {
- Ok(())
- }
+
+ // Failure, could not get quorum within at least one set
+ let errors = errors.iter().map(|e| format!("{}", e)).collect::<Vec<_>>();
+ Err(Error::Quorum(
+ quorum,
+ Some(write_sets.len()),
+ successes,
+ call_count,
+ errors,
+ ))
}
pub async fn get(