diff options
author | Alex <alex@adnab.me> | 2024-01-11 10:58:08 +0000 |
---|---|---|
committer | Alex <alex@adnab.me> | 2024-01-11 10:58:08 +0000 |
commit | 8a6ec1d6111a60e602c90ade2200b2dab5733fe3 (patch) | |
tree | b8daac4f41050339c87106d72ce7224f7eef38aa /src/rpc/layout/graph_algo.rs | |
parent | 723e56b37f13f078a15e067343191fb1bf96e8b2 (diff) | |
parent | 0041b013a473e3ae72f50209d8f79db75a72848b (diff) | |
download | garage-8a6ec1d6111a60e602c90ade2200b2dab5733fe3.tar.gz garage-8a6ec1d6111a60e602c90ade2200b2dab5733fe3.zip |
Merge pull request 'NLnet task 3' (#667) from nlnet-task3 into next-0.10
Reviewed-on: https://git.deuxfleurs.fr/Deuxfleurs/garage/pulls/667
Diffstat (limited to 'src/rpc/layout/graph_algo.rs')
-rw-r--r-- | src/rpc/layout/graph_algo.rs | 405 |
1 files changed, 405 insertions, 0 deletions
diff --git a/src/rpc/layout/graph_algo.rs b/src/rpc/layout/graph_algo.rs new file mode 100644 index 00000000..bd33e97f --- /dev/null +++ b/src/rpc/layout/graph_algo.rs @@ -0,0 +1,405 @@ +//! This module deals with graph algorithms. +//! It is used in layout.rs to build the partition to node assignment. + +use rand::prelude::{SeedableRng, SliceRandom}; +use std::cmp::{max, min}; +use std::collections::HashMap; +use std::collections::VecDeque; + +/// Vertex data structures used in all the graphs used in layout.rs. +/// usize parameters correspond to node/zone/partitions ids. +/// To understand the vertex roles below, please refer to the formal description +/// of the layout computation algorithm. +#[derive(Clone, Copy, Debug, PartialEq, Eq, Hash)] +pub enum Vertex { + Source, + Pup(usize), // The vertex p+ of partition p + Pdown(usize), // The vertex p- of partition p + PZ(usize, usize), // The vertex corresponding to x_(partition p, zone z) + N(usize), // The vertex corresponding to node n + Sink, +} + +/// Edge data structure for the flow algorithm. +#[derive(Clone, Copy, Debug)] +pub struct FlowEdge { + cap: u64, // flow maximal capacity of the edge + flow: i64, // flow value on the edge + dest: usize, // destination vertex id + rev: usize, // index of the reversed edge (v, self) in the edge list of vertex v +} + +/// Edge data structure for the detection of negative cycles. +#[derive(Clone, Copy, Debug)] +pub struct WeightedEdge { + w: i64, // weight of the edge + dest: usize, +} + +pub trait Edge: Clone + Copy {} +impl Edge for FlowEdge {} +impl Edge for WeightedEdge {} + +/// Struct for the graph structure. We do encapsulation here to be able to both +/// provide user friendly Vertex enum to address vertices, and to use internally usize +/// indices and Vec instead of HashMap in the graph algorithm to optimize execution speed. +pub struct Graph<E: Edge> { + vertex_to_id: HashMap<Vertex, usize>, + id_to_vertex: Vec<Vertex>, + + // The graph is stored as an adjacency list + graph: Vec<Vec<E>>, +} + +pub type CostFunction = HashMap<(Vertex, Vertex), i64>; + +impl<E: Edge> Graph<E> { + pub fn new(vertices: &[Vertex]) -> Self { + let mut map = HashMap::<Vertex, usize>::new(); + for (i, vert) in vertices.iter().enumerate() { + map.insert(*vert, i); + } + Graph::<E> { + vertex_to_id: map, + id_to_vertex: vertices.to_vec(), + graph: vec![Vec::<E>::new(); vertices.len()], + } + } + + fn get_vertex_id(&self, v: &Vertex) -> Result<usize, String> { + self.vertex_to_id + .get(v) + .cloned() + .ok_or_else(|| format!("The graph does not contain vertex {:?}", v)) + } +} + +impl Graph<FlowEdge> { + /// This function adds a directed edge to the graph with capacity c, and the + /// corresponding reversed edge with capacity 0. + pub fn add_edge(&mut self, u: Vertex, v: Vertex, c: u64) -> Result<(), String> { + let idu = self.get_vertex_id(&u)?; + let idv = self.get_vertex_id(&v)?; + if idu == idv { + return Err("Cannot add edge from vertex to itself in flow graph".into()); + } + + let rev_u = self.graph[idu].len(); + let rev_v = self.graph[idv].len(); + self.graph[idu].push(FlowEdge { + cap: c, + dest: idv, + flow: 0, + rev: rev_v, + }); + self.graph[idv].push(FlowEdge { + cap: 0, + dest: idu, + flow: 0, + rev: rev_u, + }); + Ok(()) + } + + /// This function returns the list of vertices that receive a positive flow from + /// vertex v. + pub fn get_positive_flow_from(&self, v: Vertex) -> Result<Vec<Vertex>, String> { + let idv = self.get_vertex_id(&v)?; + let mut result = Vec::<Vertex>::new(); + for edge in self.graph[idv].iter() { + if edge.flow > 0 { + result.push(self.id_to_vertex[edge.dest]); + } + } + Ok(result) + } + + /// This function returns the value of the flow outgoing from v. + pub fn get_outflow(&self, v: Vertex) -> Result<i64, String> { + let idv = self.get_vertex_id(&v)?; + let mut result = 0; + for edge in self.graph[idv].iter() { + result += max(0, edge.flow); + } + Ok(result) + } + + /// This function computes the flow total value by computing the outgoing flow + /// from the source. + pub fn get_flow_value(&mut self) -> Result<i64, String> { + self.get_outflow(Vertex::Source) + } + + /// This function shuffles the order of the edge lists. It keeps the ids of the + /// reversed edges consistent. + fn shuffle_edges(&mut self) { + // We use deterministic randomness so that the layout calculation algorihtm + // will output the same thing every time it is run. This way, the results + // pre-calculated in `garage layout show` will match exactly those used + // in practice with `garage layout apply` + let mut rng = rand::rngs::StdRng::from_seed([0x12u8; 32]); + for i in 0..self.graph.len() { + self.graph[i].shuffle(&mut rng); + // We need to update the ids of the reverse edges. + for j in 0..self.graph[i].len() { + let target_v = self.graph[i][j].dest; + let target_rev = self.graph[i][j].rev; + self.graph[target_v][target_rev].rev = j; + } + } + } + + /// Computes an upper bound of the flow on the graph + pub fn flow_upper_bound(&self) -> Result<u64, String> { + let idsource = self.get_vertex_id(&Vertex::Source)?; + let mut flow_upper_bound = 0; + for edge in self.graph[idsource].iter() { + flow_upper_bound += edge.cap; + } + Ok(flow_upper_bound) + } + + /// This function computes the maximal flow using Dinic's algorithm. It starts with + /// the flow values already present in the graph. So it is possible to add some edge to + /// the graph, compute a flow, add other edges, update the flow. + pub fn compute_maximal_flow(&mut self) -> Result<(), String> { + let idsource = self.get_vertex_id(&Vertex::Source)?; + let idsink = self.get_vertex_id(&Vertex::Sink)?; + + let nb_vertices = self.graph.len(); + + let flow_upper_bound = self.flow_upper_bound()?; + + // To ensure the dispersion of the associations generated by the + // assignment, we shuffle the neighbours of the nodes. Hence, + // the vertices do not consider their neighbours in the same order. + self.shuffle_edges(); + + // We run Dinic's max flow algorithm + loop { + // We build the level array from Dinic's algorithm. + let mut level = vec![None; nb_vertices]; + + let mut fifo = VecDeque::new(); + fifo.push_back((idsource, 0)); + while let Some((id, lvl)) = fifo.pop_front() { + if level[id].is_none() { + // it means id has not yet been reached + level[id] = Some(lvl); + for edge in self.graph[id].iter() { + if edge.cap as i64 - edge.flow > 0 { + fifo.push_back((edge.dest, lvl + 1)); + } + } + } + } + if level[idsink].is_none() { + // There is no residual flow + break; + } + // Now we run DFS respecting the level array + let mut next_nbd = vec![0; nb_vertices]; + let mut lifo = Vec::new(); + + lifo.push((idsource, flow_upper_bound)); + + while let Some((id, f)) = lifo.last().cloned() { + if id == idsink { + // The DFS reached the sink, we can add a + // residual flow. + lifo.pop(); + while let Some((id, _)) = lifo.pop() { + let nbd = next_nbd[id]; + self.graph[id][nbd].flow += f as i64; + let id_rev = self.graph[id][nbd].dest; + let nbd_rev = self.graph[id][nbd].rev; + self.graph[id_rev][nbd_rev].flow -= f as i64; + } + lifo.push((idsource, flow_upper_bound)); + continue; + } + // else we did not reach the sink + let nbd = next_nbd[id]; + if nbd >= self.graph[id].len() { + // There is nothing to explore from id anymore + lifo.pop(); + if let Some((parent, _)) = lifo.last() { + next_nbd[*parent] += 1; + } + continue; + } + // else we can try to send flow from id to its nbd + let new_flow = min( + f as i64, + self.graph[id][nbd].cap as i64 - self.graph[id][nbd].flow, + ) as u64; + if new_flow == 0 { + next_nbd[id] += 1; + continue; + } + if let (Some(lvldest), Some(lvlid)) = (level[self.graph[id][nbd].dest], level[id]) { + if lvldest <= lvlid { + // We cannot send flow to nbd. + next_nbd[id] += 1; + continue; + } + } + // otherwise, we send flow to nbd. + lifo.push((self.graph[id][nbd].dest, new_flow)); + } + } + Ok(()) + } + + /// This function takes a flow, and a cost function on the edges, and tries to find an + /// equivalent flow with a better cost, by finding improving overflow cycles. It uses + /// as subroutine the Bellman Ford algorithm run up to path_length. + /// We assume that the cost of edge (u,v) is the opposite of the cost of (v,u), and + /// only one needs to be present in the cost function. + pub fn optimize_flow_with_cost( + &mut self, + cost: &CostFunction, + path_length: usize, + ) -> Result<(), String> { + // We build the weighted graph g where we will look for negative cycle + let mut gf = self.build_cost_graph(cost)?; + let mut cycles = gf.list_negative_cycles(path_length); + while !cycles.is_empty() { + // we enumerate negative cycles + for c in cycles.iter() { + for i in 0..c.len() { + // We add one flow unit to the edge (u,v) of cycle c + let idu = self.vertex_to_id[&c[i]]; + let idv = self.vertex_to_id[&c[(i + 1) % c.len()]]; + for j in 0..self.graph[idu].len() { + // since idu appears at most once in the cycles, we enumerate every + // edge at most once. + let edge = self.graph[idu][j]; + if edge.dest == idv { + self.graph[idu][j].flow += 1; + self.graph[idv][edge.rev].flow -= 1; + break; + } + } + } + } + + gf = self.build_cost_graph(cost)?; + cycles = gf.list_negative_cycles(path_length); + } + Ok(()) + } + + /// Construct the weighted graph G_f from the flow and the cost function + fn build_cost_graph(&self, cost: &CostFunction) -> Result<Graph<WeightedEdge>, String> { + let mut g = Graph::<WeightedEdge>::new(&self.id_to_vertex); + let nb_vertices = self.id_to_vertex.len(); + for i in 0..nb_vertices { + for edge in self.graph[i].iter() { + if edge.cap as i64 - edge.flow > 0 { + // It is possible to send overflow through this edge + let u = self.id_to_vertex[i]; + let v = self.id_to_vertex[edge.dest]; + if cost.contains_key(&(u, v)) { + g.add_edge(u, v, cost[&(u, v)])?; + } else if cost.contains_key(&(v, u)) { + g.add_edge(u, v, -cost[&(v, u)])?; + } else { + g.add_edge(u, v, 0)?; + } + } + } + } + Ok(g) + } +} + +impl Graph<WeightedEdge> { + /// This function adds a single directed weighted edge to the graph. + pub fn add_edge(&mut self, u: Vertex, v: Vertex, w: i64) -> Result<(), String> { + let idu = self.get_vertex_id(&u)?; + let idv = self.get_vertex_id(&v)?; + self.graph[idu].push(WeightedEdge { w, dest: idv }); + Ok(()) + } + + /// This function lists the negative cycles it manages to find after path_length + /// iterations of the main loop of the Bellman-Ford algorithm. For the classical + /// algorithm, path_length needs to be equal to the number of vertices. However, + /// for particular graph structures like in our case, the algorithm is still correct + /// when path_length is the length of the longest possible simple path. + /// See the formal description of the algorithm for more details. + fn list_negative_cycles(&self, path_length: usize) -> Vec<Vec<Vertex>> { + let nb_vertices = self.graph.len(); + + // We start with every vertex at distance 0 of some imaginary extra -1 vertex. + let mut distance = vec![0; nb_vertices]; + // The prev vector collects for every vertex from where does the shortest path come + let mut prev = vec![None; nb_vertices]; + + for _ in 0..path_length + 1 { + for id in 0..nb_vertices { + for e in self.graph[id].iter() { + if distance[id] + e.w < distance[e.dest] { + distance[e.dest] = distance[id] + e.w; + prev[e.dest] = Some(id); + } + } + } + } + + // If self.graph contains a negative cycle, then at this point the graph described + // by prev (which is a directed 1-forest/functional graph) + // must contain a cycle. We list the cycles of prev. + let cycles_prev = cycles_of_1_forest(&prev); + + // Remark that the cycle in prev is in the reverse order compared to the cycle + // in the graph. Thus the .rev(). + return cycles_prev + .iter() + .map(|cycle| { + cycle + .iter() + .rev() + .map(|id| self.id_to_vertex[*id]) + .collect() + }) + .collect(); + } +} + +/// This function returns the list of cycles of a directed 1 forest. It does not +/// check for the consistency of the input. +fn cycles_of_1_forest(forest: &[Option<usize>]) -> Vec<Vec<usize>> { + let mut cycles = Vec::<Vec<usize>>::new(); + let mut time_of_discovery = vec![None; forest.len()]; + + for t in 0..forest.len() { + let mut id = t; + // while we are on a valid undiscovered node + while time_of_discovery[id].is_none() { + time_of_discovery[id] = Some(t); + if let Some(i) = forest[id] { + id = i; + } else { + break; + } + } + if forest[id].is_some() && time_of_discovery[id] == Some(t) { + // We discovered an id that we explored at this iteration t. + // It means we are on a cycle + let mut cy = vec![id; 1]; + let mut id2 = id; + while let Some(id_next) = forest[id2] { + id2 = id_next; + if id2 != id { + cy.push(id2); + } else { + break; + } + } + cycles.push(cy); + } + } + cycles +} |