aboutsummaryrefslogtreecommitdiff
path: root/src/rpc/layout.rs
diff options
context:
space:
mode:
authorAlex Auvolat <alex@adnab.me>2023-11-08 17:49:06 +0100
committerAlex Auvolat <alex@adnab.me>2023-11-08 17:49:06 +0100
commitfe9af1dcaae31a117528a9cfa10c422c9a850201 (patch)
tree6e43dbb97d37d48f6af5398b4d067747e652108c /src/rpc/layout.rs
parent4a9c94514f49aa4e9880a8e0f5cf5a52d11ae993 (diff)
downloadgarage-fe9af1dcaae31a117528a9cfa10c422c9a850201.tar.gz
garage-fe9af1dcaae31a117528a9cfa10c422c9a850201.zip
WIP: garage_rpc: store layout version history
Diffstat (limited to 'src/rpc/layout.rs')
-rw-r--r--src/rpc/layout.rs1358
1 files changed, 0 insertions, 1358 deletions
diff --git a/src/rpc/layout.rs b/src/rpc/layout.rs
deleted file mode 100644
index 2b5b6606..00000000
--- a/src/rpc/layout.rs
+++ /dev/null
@@ -1,1358 +0,0 @@
-use std::cmp::Ordering;
-use std::collections::HashMap;
-use std::collections::HashSet;
-use std::fmt;
-
-use bytesize::ByteSize;
-use itertools::Itertools;
-
-use garage_util::crdt::{AutoCrdt, Crdt, Lww, LwwMap};
-use garage_util::data::*;
-use garage_util::encode::nonversioned_encode;
-use garage_util::error::*;
-
-use crate::graph_algo::*;
-
-use std::convert::TryInto;
-
-// ---- defines: partitions ----
-
-/// A partition id, which is stored on 16 bits
-/// i.e. we have up to 2**16 partitions.
-/// (in practice we have exactly 2**PARTITION_BITS partitions)
-pub type Partition = u16;
-
-// TODO: make this constant parametrizable in the config file
-// For deployments with many nodes it might make sense to bump
-// it up to 10.
-// Maximum value : 16
-/// How many bits from the hash are used to make partitions. Higher numbers means more fairness in
-/// presence of numerous nodes, but exponentially bigger ring. Max 16
-pub const PARTITION_BITS: usize = 8;
-
-const NB_PARTITIONS: usize = 1usize << PARTITION_BITS;
-
-// ---- defines: nodes ----
-
-// Type to store compactly the id of a node in the system
-// Change this to u16 the day we want to have more than 256 nodes in a cluster
-pub type CompactNodeType = u8;
-pub const MAX_NODE_NUMBER: usize = 256;
-
-// ---- defines: other ----
-
-// The Message type will be used to collect information on the algorithm.
-pub type Message = Vec<String>;
-
-mod v08 {
- use super::CompactNodeType;
- use garage_util::crdt::LwwMap;
- use garage_util::data::{Hash, Uuid};
- use serde::{Deserialize, Serialize};
-
- /// The layout of the cluster, i.e. the list of roles
- /// which are assigned to each cluster node
- #[derive(Clone, Debug, Serialize, Deserialize)]
- pub struct ClusterLayout {
- pub version: u64,
-
- pub replication_factor: usize,
- pub roles: LwwMap<Uuid, NodeRoleV>,
-
- /// node_id_vec: a vector of node IDs with a role assigned
- /// in the system (this includes gateway nodes).
- /// The order here is different than the vec stored by `roles`, because:
- /// 1. non-gateway nodes are first so that they have lower numbers
- /// 2. nodes that don't have a role are excluded (but they need to
- /// stay in the CRDT as tombstones)
- pub node_id_vec: Vec<Uuid>,
- /// the assignation of data partitions to node, the values
- /// are indices in node_id_vec
- #[serde(with = "serde_bytes")]
- pub ring_assignation_data: Vec<CompactNodeType>,
-
- /// Role changes which are staged for the next version of the layout
- pub staging: LwwMap<Uuid, NodeRoleV>,
- pub staging_hash: Hash,
- }
-
- #[derive(PartialEq, Eq, PartialOrd, Ord, Clone, Debug, Serialize, Deserialize)]
- pub struct NodeRoleV(pub Option<NodeRole>);
-
- /// The user-assigned roles of cluster nodes
- #[derive(PartialEq, Eq, PartialOrd, Ord, Clone, Debug, Serialize, Deserialize)]
- pub struct NodeRole {
- /// Datacenter at which this entry belong. This information is used to
- /// perform a better geodistribution
- pub zone: String,
- /// The capacity of the node
- /// If this is set to None, the node does not participate in storing data for the system
- /// and is only active as an API gateway to other nodes
- pub capacity: Option<u64>,
- /// A set of tags to recognize the node
- pub tags: Vec<String>,
- }
-
- impl garage_util::migrate::InitialFormat for ClusterLayout {}
-}
-
-mod v09 {
- use super::v08;
- use super::CompactNodeType;
- use garage_util::crdt::{Lww, LwwMap};
- use garage_util::data::{Hash, Uuid};
- use serde::{Deserialize, Serialize};
- pub use v08::{NodeRole, NodeRoleV};
-
- /// The layout of the cluster, i.e. the list of roles
- /// which are assigned to each cluster node
- #[derive(Clone, Debug, Serialize, Deserialize)]
- pub struct ClusterLayout {
- pub version: u64,
-
- pub replication_factor: usize,
-
- /// This attribute is only used to retain the previously computed partition size,
- /// to know to what extent does it change with the layout update.
- pub partition_size: u64,
- /// Parameters used to compute the assignment currently given by
- /// ring_assignment_data
- pub parameters: LayoutParameters,
-
- pub roles: LwwMap<Uuid, NodeRoleV>,
-
- /// see comment in v08::ClusterLayout
- pub node_id_vec: Vec<Uuid>,
- /// see comment in v08::ClusterLayout
- #[serde(with = "serde_bytes")]
- pub ring_assignment_data: Vec<CompactNodeType>,
-
- /// Parameters to be used in the next partition assignment computation.
- pub staging_parameters: Lww<LayoutParameters>,
- /// Role changes which are staged for the next version of the layout
- pub staging_roles: LwwMap<Uuid, NodeRoleV>,
- pub staging_hash: Hash,
- }
-
- /// This struct is used to set the parameters to be used in the assignment computation
- /// algorithm. It is stored as a Crdt.
- #[derive(PartialEq, Eq, PartialOrd, Ord, Clone, Copy, Debug, Serialize, Deserialize)]
- pub struct LayoutParameters {
- pub zone_redundancy: ZoneRedundancy,
- }
-
- /// Zone redundancy: if set to AtLeast(x), the layout calculation will aim to store copies
- /// of each partition on at least that number of different zones.
- /// Otherwise, copies will be stored on the maximum possible number of zones.
- #[derive(PartialEq, Eq, PartialOrd, Ord, Clone, Copy, Debug, Serialize, Deserialize)]
- pub enum ZoneRedundancy {
- AtLeast(usize),
- Maximum,
- }
-
- impl garage_util::migrate::Migrate for ClusterLayout {
- const VERSION_MARKER: &'static [u8] = b"G09layout";
-
- type Previous = v08::ClusterLayout;
-
- fn migrate(previous: Self::Previous) -> Self {
- use itertools::Itertools;
-
- // In the old layout, capacities are in an arbitrary unit,
- // but in the new layout they are in bytes.
- // Here we arbitrarily multiply everything by 1G,
- // such that 1 old capacity unit = 1GB in the new units.
- // This is totally arbitrary and won't work for most users.
- let cap_mul = 1024 * 1024 * 1024;
- let roles = multiply_all_capacities(previous.roles, cap_mul);
- let staging_roles = multiply_all_capacities(previous.staging, cap_mul);
- let node_id_vec = previous.node_id_vec;
-
- // Determine partition size
- let mut tmp = previous.ring_assignation_data.clone();
- tmp.sort();
- let partition_size = tmp
- .into_iter()
- .dedup_with_count()
- .map(|(npart, node)| {
- roles
- .get(&node_id_vec[node as usize])
- .and_then(|p| p.0.as_ref().and_then(|r| r.capacity))
- .unwrap_or(0) / npart as u64
- })
- .min()
- .unwrap_or(0);
-
- // By default, zone_redundancy is maximum possible value
- let parameters = LayoutParameters {
- zone_redundancy: ZoneRedundancy::Maximum,
- };
-
- let mut res = Self {
- version: previous.version,
- replication_factor: previous.replication_factor,
- partition_size,
- parameters,
- roles,
- node_id_vec,
- ring_assignment_data: previous.ring_assignation_data,
- staging_parameters: Lww::new(parameters),
- staging_roles,
- staging_hash: [0u8; 32].into(),
- };
- res.staging_hash = res.calculate_staging_hash();
- res
- }
- }
-
- fn multiply_all_capacities(
- old_roles: LwwMap<Uuid, NodeRoleV>,
- mul: u64,
- ) -> LwwMap<Uuid, NodeRoleV> {
- let mut new_roles = LwwMap::new();
- for (node, ts, role) in old_roles.items() {
- let mut role = role.clone();
- if let NodeRoleV(Some(NodeRole {
- capacity: Some(ref mut cap),
- ..
- })) = role
- {
- *cap *= mul;
- }
- new_roles.merge_raw(node, *ts, &role);
- }
- new_roles
- }
-}
-
-pub use v09::*;
-
-impl AutoCrdt for LayoutParameters {
- const WARN_IF_DIFFERENT: bool = true;
-}
-
-impl AutoCrdt for NodeRoleV {
- const WARN_IF_DIFFERENT: bool = true;
-}
-
-impl NodeRole {
- pub fn capacity_string(&self) -> String {
- match self.capacity {
- Some(c) => ByteSize::b(c).to_string_as(false),
- None => "gateway".to_string(),
- }
- }
-
- pub fn tags_string(&self) -> String {
- self.tags.join(",")
- }
-}
-
-impl fmt::Display for ZoneRedundancy {
- fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
- match self {
- ZoneRedundancy::Maximum => write!(f, "maximum"),
- ZoneRedundancy::AtLeast(x) => write!(f, "{}", x),
- }
- }
-}
-
-impl core::str::FromStr for ZoneRedundancy {
- type Err = &'static str;
- fn from_str(s: &str) -> Result<Self, Self::Err> {
- match s {
- "none" | "max" | "maximum" => Ok(ZoneRedundancy::Maximum),
- x => {
- let v = x
- .parse::<usize>()
- .map_err(|_| "zone redundancy must be 'none'/'max' or an integer")?;
- Ok(ZoneRedundancy::AtLeast(v))
- }
- }
- }
-}
-
-// Implementation of the ClusterLayout methods unrelated to the assignment algorithm.
-impl ClusterLayout {
- pub fn new(replication_factor: usize) -> Self {
- // We set the default zone redundancy to be Maximum, meaning that the maximum
- // possible value will be used depending on the cluster topology
- let parameters = LayoutParameters {
- zone_redundancy: ZoneRedundancy::Maximum,
- };
- let staging_parameters = Lww::<LayoutParameters>::new(parameters);
-
- let empty_lwwmap = LwwMap::new();
-
- let mut ret = ClusterLayout {
- version: 0,
- replication_factor,
- partition_size: 0,
- roles: LwwMap::new(),
- node_id_vec: Vec::new(),
- ring_assignment_data: Vec::new(),
- parameters,
- staging_parameters,
- staging_roles: empty_lwwmap,
- staging_hash: [0u8; 32].into(),
- };
- ret.staging_hash = ret.calculate_staging_hash();
- ret
- }
-
- // ===================== accessors ======================
-
- /// Returns a list of IDs of nodes that currently have
- /// a role in the cluster
- pub fn node_ids(&self) -> &[Uuid] {
- &self.node_id_vec[..]
- }
-
- pub fn num_nodes(&self) -> usize {
- self.node_id_vec.len()
- }
-
- /// Returns the role of a node in the layout
- pub fn node_role(&self, node: &Uuid) -> Option<&NodeRole> {
- match self.roles.get(node) {
- Some(NodeRoleV(Some(v))) => Some(v),
- _ => None,
- }
- }
-
- /// Given a node uuids, this function returns its capacity or fails if it does not have any
- pub fn get_node_capacity(&self, uuid: &Uuid) -> Result<u64, Error> {
- match self.node_role(uuid) {
- Some(NodeRole {
- capacity: Some(cap),
- zone: _,
- tags: _,
- }) => Ok(*cap),
- _ => Err(Error::Message(
- "The Uuid does not correspond to a node present in the \
- cluster or this node does not have a positive capacity."
- .into(),
- )),
- }
- }
-
- /// Returns the number of partitions associated to this node in the ring
- pub fn get_node_usage(&self, uuid: &Uuid) -> Result<usize, Error> {
- for (i, id) in self.node_id_vec.iter().enumerate() {
- if id == uuid {
- let mut count = 0;
- for nod in self.ring_assignment_data.iter() {
- if i as u8 == *nod {
- count += 1
- }
- }
- return Ok(count);
- }
- }
- Err(Error::Message(
- "The Uuid does not correspond to a node present in the \
- cluster or this node does not have a positive capacity."
- .into(),
- ))
- }
-
- /// Get the partition in which data would fall on
- pub fn partition_of(&self, position: &Hash) -> Partition {
- let top = u16::from_be_bytes(position.as_slice()[0..2].try_into().unwrap());
- top >> (16 - PARTITION_BITS)
- }
-
- /// Get the list of partitions and the first hash of a partition key that would fall in it
- pub fn partitions(&self) -> Vec<(Partition, Hash)> {
- (0..(1 << PARTITION_BITS))
- .map(|i| {
- let top = (i as u16) << (16 - PARTITION_BITS);
- let mut location = [0u8; 32];
- location[..2].copy_from_slice(&u16::to_be_bytes(top)[..]);
- (i as u16, Hash::from(location))
- })
- .collect::<Vec<_>>()
- }
-
- /// Walk the ring to find the n servers in which data should be replicated
- pub fn nodes_of(&self, position: &Hash, n: usize) -> Vec<Uuid> {
- assert_eq!(n, self.replication_factor);
-
- let data = &self.ring_assignment_data;
-
- if data.len() != self.replication_factor * (1 << PARTITION_BITS) {
- warn!("Ring not yet ready, read/writes will be lost!");
- return vec![];
- }
-
- let partition_idx = self.partition_of(position) as usize;
- let partition_start = partition_idx * self.replication_factor;
- let partition_end = (partition_idx + 1) * self.replication_factor;
- let partition_nodes = &data[partition_start..partition_end];
-
- partition_nodes
- .iter()
- .map(|i| self.node_id_vec[*i as usize])
- .collect::<Vec<_>>()
- }
-
- // ===================== internal information extractors ======================
-
- /// Returns the uuids of the non_gateway nodes in self.node_id_vec.
- fn nongateway_nodes(&self) -> Vec<Uuid> {
- let mut result = Vec::<Uuid>::new();
- for uuid in self.node_id_vec.iter() {
- match self.node_role(uuid) {
- Some(role) if role.capacity.is_some() => result.push(*uuid),
- _ => (),
- }
- }
- result
- }
-
- /// Given a node uuids, this function returns the label of its zone
- fn get_node_zone(&self, uuid: &Uuid) -> Result<&str, Error> {
- match self.node_role(uuid) {
- Some(role) => Ok(&role.zone),
- _ => Err(Error::Message(
- "The Uuid does not correspond to a node present in the cluster.".into(),
- )),
- }
- }
-
- /// Returns the sum of capacities of non gateway nodes in the cluster
- fn get_total_capacity(&self) -> Result<u64, Error> {
- let mut total_capacity = 0;
- for uuid in self.nongateway_nodes().iter() {
- total_capacity += self.get_node_capacity(uuid)?;
- }
- Ok(total_capacity)
- }
-
- /// Returns the effective value of the zone_redundancy parameter
- fn effective_zone_redundancy(&self) -> usize {
- match self.parameters.zone_redundancy {
- ZoneRedundancy::AtLeast(v) => v,
- ZoneRedundancy::Maximum => {
- let n_zones = self
- .roles
- .items()
- .iter()
- .filter_map(|(_, _, role)| role.0.as_ref().map(|x| x.zone.as_str()))
- .collect::<HashSet<&str>>()
- .len();
- std::cmp::min(n_zones, self.replication_factor)
- }
- }
- }
-
- fn calculate_staging_hash(&self) -> Hash {
- let hashed_tuple = (&self.staging_roles, &self.staging_parameters);
- blake2sum(&nonversioned_encode(&hashed_tuple).unwrap()[..])
- }
-
- // ================== updates to layout, public interface ===================
-
- pub fn merge(&mut self, other: &ClusterLayout) -> bool {
- match other.version.cmp(&self.version) {
- Ordering::Greater => {
- *self = other.clone();
- true
- }
- Ordering::Equal => {
- self.staging_parameters.merge(&other.staging_parameters);
- self.staging_roles.merge(&other.staging_roles);
-
- let new_staging_hash = self.calculate_staging_hash();
- let changed = new_staging_hash != self.staging_hash;
-
- self.staging_hash = new_staging_hash;
-
- changed
- }
- Ordering::Less => false,
- }
- }
-
- pub fn apply_staged_changes(mut self, version: Option<u64>) -> Result<(Self, Message), Error> {
- match version {
- None => {
- let error = r#"
-Please pass the new layout version number to ensure that you are writing the correct version of the cluster layout.
-To know the correct value of the new layout version, invoke `garage layout show` and review the proposed changes.
- "#;
- return Err(Error::Message(error.into()));
- }
- Some(v) => {
- if v != self.version + 1 {
- return Err(Error::Message("Invalid new layout version".into()));
- }
- }
- }
-
- self.roles.merge(&self.staging_roles);
- self.roles.retain(|(_, _, v)| v.0.is_some());
- self.parameters = *self.staging_parameters.get();
-
- self.staging_roles.clear();
- self.staging_hash = self.calculate_staging_hash();
-
- let msg = self.calculate_partition_assignment()?;
-
- self.version += 1;
-
- Ok((self, msg))
- }
-
- pub fn revert_staged_changes(mut self, version: Option<u64>) -> Result<Self, Error> {
- match version {
- None => {
- let error = r#"
-Please pass the new layout version number to ensure that you are writing the correct version of the cluster layout.
-To know the correct value of the new layout version, invoke `garage layout show` and review the proposed changes.
- "#;
- return Err(Error::Message(error.into()));
- }
- Some(v) => {
- if v != self.version + 1 {
- return Err(Error::Message("Invalid new layout version".into()));
- }
- }
- }
-
- self.staging_roles.clear();
- self.staging_parameters.update(self.parameters);
- self.staging_hash = self.calculate_staging_hash();
-
- self.version += 1;
-
- Ok(self)
- }
-
- /// Check a cluster layout for internal consistency
- /// (assignment, roles, parameters, partition size)
- /// returns true if consistent, false if error
- pub fn check(&self) -> Result<(), String> {
- // Check that the hash of the staging data is correct
- let staging_hash = self.calculate_staging_hash();
- if staging_hash != self.staging_hash {
- return Err("staging_hash is incorrect".into());
- }
-
- // Check that node_id_vec contains the correct list of nodes
- let mut expected_nodes = self
- .roles
- .items()
- .iter()
- .filter(|(_, _, v)| v.0.is_some())
- .map(|(id, _, _)| *id)
- .collect::<Vec<_>>();
- expected_nodes.sort();
- let mut node_id_vec = self.node_id_vec.clone();
- node_id_vec.sort();
- if expected_nodes != node_id_vec {
- return Err(format!("node_id_vec does not contain the correct set of nodes\nnode_id_vec: {:?}\nexpected: {:?}", node_id_vec, expected_nodes));
- }
-
- // Check that the assignment data has the correct length
- let expected_assignment_data_len = (1 << PARTITION_BITS) * self.replication_factor;
- if self.ring_assignment_data.len() != expected_assignment_data_len {
- return Err(format!(
- "ring_assignment_data has incorrect length {} instead of {}",
- self.ring_assignment_data.len(),
- expected_assignment_data_len
- ));
- }
-
- // Check that the assigned nodes are correct identifiers
- // of nodes that are assigned a role
- // and that role is not the role of a gateway nodes
- for x in self.ring_assignment_data.iter() {
- if *x as usize >= self.node_id_vec.len() {
- return Err(format!(
- "ring_assignment_data contains invalid node id {}",
- *x
- ));
- }
- let node = self.node_id_vec[*x as usize];
- match self.roles.get(&node) {
- Some(NodeRoleV(Some(x))) if x.capacity.is_some() => (),
- _ => return Err("ring_assignment_data contains id of a gateway node".into()),
- }
- }
-
- // Check that every partition is associated to distinct nodes
- let zone_redundancy = self.effective_zone_redundancy();
- let rf = self.replication_factor;
- for p in 0..(1 << PARTITION_BITS) {
- let nodes_of_p = self.ring_assignment_data[rf * p..rf * (p + 1)].to_vec();
- if nodes_of_p.iter().unique().count() != rf {
- return Err(format!("partition does not contain {} unique node ids", rf));
- }
- // Check that every partition is spread over at least zone_redundancy zones.
- let zones_of_p = nodes_of_p
- .iter()
- .map(|n| {
- self.get_node_zone(&self.node_id_vec[*n as usize])
- .expect("Zone not found.")
- })
- .collect::<Vec<_>>();
- if zones_of_p.iter().unique().count() < zone_redundancy {
- return Err(format!(
- "nodes of partition are in less than {} distinct zones",
- zone_redundancy
- ));
- }
- }
-
- // Check that the nodes capacities is consistent with the stored partitions
- let mut node_usage = vec![0; MAX_NODE_NUMBER];
- for n in self.ring_assignment_data.iter() {
- node_usage[*n as usize] += 1;
- }
- for (n, usage) in node_usage.iter().enumerate() {
- if *usage > 0 {
- let uuid = self.node_id_vec[n];
- let partusage = usage * self.partition_size;
- let nodecap = self.get_node_capacity(&uuid).unwrap();
- if partusage > nodecap {
- return Err(format!(
- "node usage ({}) is bigger than node capacity ({})",
- usage * self.partition_size,
- nodecap
- ));
- }
- }
- }
-
- // Check that the partition size stored is the one computed by the asignation
- // algorithm.
- let cl2 = self.clone();
- let (_, zone_to_id) = cl2.generate_nongateway_zone_ids().unwrap();
- match cl2.compute_optimal_partition_size(&zone_to_id, zone_redundancy) {
- Ok(s) if s != self.partition_size => {
- return Err(format!(
- "partition_size ({}) is different than optimal value ({})",
- self.partition_size, s
- ))
- }
- Err(e) => return Err(format!("could not calculate optimal partition size: {}", e)),
- _ => (),
- }
-
- Ok(())
- }
-
- // ================== updates to layout, internals ===================
-
- /// This function calculates a new partition-to-node assignment.
- /// The computed assignment respects the node replication factor
- /// and the zone redundancy parameter It maximizes the capacity of a
- /// partition (assuming all partitions have the same size).
- /// Among such optimal assignment, it minimizes the distance to
- /// the former assignment (if any) to minimize the amount of
- /// data to be moved.
- /// Staged role changes must be merged with nodes roles before calling this function,
- /// hence it must only be called from apply_staged_changes() and hence is not public.
- fn calculate_partition_assignment(&mut self) -> Result<Message, Error> {
- // We update the node ids, since the node role list might have changed with the
- // changes in the layout. We retrieve the old_assignment reframed with new ids
- let old_assignment_opt = self.update_node_id_vec()?;
-
- let zone_redundancy = self.effective_zone_redundancy();
-
- let mut msg = Message::new();
- msg.push("==== COMPUTATION OF A NEW PARTITION ASSIGNATION ====".into());
- msg.push("".into());
- msg.push(format!(
- "Partitions are \
- replicated {} times on at least {} distinct zones.",
- self.replication_factor, zone_redundancy
- ));
-
- // We generate for once numerical ids for the zones of non gateway nodes,
- // to use them as indices in the flow graphs.
- let (id_to_zone, zone_to_id) = self.generate_nongateway_zone_ids()?;
-
- let nb_nongateway_nodes = self.nongateway_nodes().len();
- if nb_nongateway_nodes < self.replication_factor {
- return Err(Error::Message(format!(
- "The number of nodes with positive \
- capacity ({}) is smaller than the replication factor ({}).",
- nb_nongateway_nodes, self.replication_factor
- )));
- }
- if id_to_zone.len() < zone_redundancy {
- return Err(Error::Message(format!(
- "The number of zones with non-gateway \
- nodes ({}) is smaller than the redundancy parameter ({})",
- id_to_zone.len(),
- zone_redundancy
- )));
- }
-
- // We compute the optimal partition size
- // Capacities should be given in a unit so that partition size is at least 100.
- // In this case, integer rounding plays a marginal role in the percentages of
- // optimality.
- let partition_size = self.compute_optimal_partition_size(&zone_to_id, zone_redundancy)?;
-
- msg.push("".into());
- if old_assignment_opt.is_some() {
- msg.push(format!(
- "Optimal partition size: {} ({} in previous layout)",
- ByteSize::b(partition_size).to_string_as(false),
- ByteSize::b(self.partition_size).to_string_as(false)
- ));
- } else {
- msg.push(format!(
- "Optimal partition size: {}",
- ByteSize::b(partition_size).to_string_as(false)
- ));
- }
- // We write the partition size.
- self.partition_size = partition_size;
-
- if partition_size < 100 {
- msg.push(
- "WARNING: The partition size is low (< 100), make sure the capacities of your nodes are correct and are of at least a few MB"
- .into(),
- );
- }
-
- // We compute a first flow/assignment that is heuristically close to the previous
- // assignment
- let mut gflow =
- self.compute_candidate_assignment(&zone_to_id, &old_assignment_opt, zone_redundancy)?;
- if let Some(assoc) = &old_assignment_opt {
- // We minimize the distance to the previous assignment.
- self.minimize_rebalance_load(&mut gflow, &zone_to_id, assoc)?;
- }
-
- // We display statistics of the computation
- msg.extend(self.output_stat(&gflow, &old_assignment_opt, &zone_to_id, &id_to_zone)?);
-
- // We update the layout structure
- self.update_ring_from_flow(id_to_zone.len(), &gflow)?;
-
- if let Err(e) = self.check() {
- return Err(Error::Message(
- format!("Layout check returned an error: {}\nOriginal result of computation: <<<<\n{}\n>>>>", e, msg.join("\n"))
- ));
- }
-
- Ok(msg)
- }
-
- /// The LwwMap of node roles might have changed. This function updates the node_id_vec
- /// and returns the assignment given by ring, with the new indices of the nodes, and
- /// None if the node is not present anymore.
- /// We work with the assumption that only this function and calculate_new_assignment
- /// do modify assignment_ring and node_id_vec.
- fn update_node_id_vec(&mut self) -> Result<Option<Vec<Vec<usize>>>, Error> {
- // (1) We compute the new node list
- // Non gateway nodes should be coded on 8bits, hence they must be first in the list
- // We build the new node ids
- let new_non_gateway_nodes: Vec<Uuid> = self
- .roles
- .items()
- .iter()
- .filter(|(_, _, v)| matches!(&v.0, Some(r) if r.capacity.is_some()))
- .map(|(k, _, _)| *k)
- .collect();
-
- if new_non_gateway_nodes.len() > MAX_NODE_NUMBER {
- return Err(Error::Message(format!(
- "There are more than {} non-gateway nodes in the new \
- layout. This is not allowed.",
- MAX_NODE_NUMBER
- )));
- }
-
- let new_gateway_nodes: Vec<Uuid> = self
- .roles
- .items()
- .iter()
- .filter(|(_, _, v)| matches!(v, NodeRoleV(Some(r)) if r.capacity.is_none()))
- .map(|(k, _, _)| *k)
- .collect();
-
- let mut new_node_id_vec = Vec::<Uuid>::new();
- new_node_id_vec.extend(new_non_gateway_nodes);
- new_node_id_vec.extend(new_gateway_nodes);
-
- let old_node_id_vec = self.node_id_vec.clone();
- self.node_id_vec = new_node_id_vec.clone();
-
- // (2) We retrieve the old association
- // We rewrite the old association with the new indices. We only consider partition
- // to node assignments where the node is still in use.
- if self.ring_assignment_data.is_empty() {
- // This is a new association
- return Ok(None);
- }
-
- if self.ring_assignment_data.len() != NB_PARTITIONS * self.replication_factor {
- return Err(Error::Message(
- "The old assignment does not have a size corresponding to \
- the old replication factor or the number of partitions."
- .into(),
- ));
- }
-
- // We build a translation table between the uuid and new ids
- let mut uuid_to_new_id = HashMap::<Uuid, usize>::new();
-
- // We add the indices of only the new non-gateway nodes that can be used in the
- // association ring
- for (i, uuid) in new_node_id_vec.iter().enumerate() {
- uuid_to_new_id.insert(*uuid, i);
- }
-
- let mut old_assignment = vec![Vec::<usize>::new(); NB_PARTITIONS];
- let rf = self.replication_factor;
-
- for (p, old_assign_p) in old_assignment.iter_mut().enumerate() {
- for old_id in &self.ring_assignment_data[p * rf..(p + 1) * rf] {
- let uuid = old_node_id_vec[*old_id as usize];
- if uuid_to_new_id.contains_key(&uuid) {
- old_assign_p.push(uuid_to_new_id[&uuid]);
- }
- }
- }
-
- // We write the ring
- self.ring_assignment_data = Vec::<CompactNodeType>::new();
-
- Ok(Some(old_assignment))
- }
-
- /// This function generates ids for the zone of the nodes appearing in
- /// self.node_id_vec.
- fn generate_nongateway_zone_ids(&self) -> Result<(Vec<String>, HashMap<String, usize>), Error> {
- let mut id_to_zone = Vec::<String>::new();
- let mut zone_to_id = HashMap::<String, usize>::new();
-
- for uuid in self.nongateway_nodes().iter() {
- let r = self.node_role(uuid).unwrap();
- if !zone_to_id.contains_key(&r.zone) && r.capacity.is_some() {
- zone_to_id.insert(r.zone.clone(), id_to_zone.len());
- id_to_zone.push(r.zone.clone());
- }
- }
- Ok((id_to_zone, zone_to_id))
- }
-
- /// This function computes by dichotomy the largest realizable partition size, given
- /// the layout roles and parameters.
- fn compute_optimal_partition_size(
- &self,
- zone_to_id: &HashMap<String, usize>,
- zone_redundancy: usize,
- ) -> Result<u64, Error> {
- let empty_set = HashSet::<(usize, usize)>::new();
- let mut g = self.generate_flow_graph(1, zone_to_id, &empty_set, zone_redundancy)?;
- g.compute_maximal_flow()?;
- if g.get_flow_value()? < (NB_PARTITIONS * self.replication_factor) as i64 {
- return Err(Error::Message(
- "The storage capacity of he cluster is to small. It is \
- impossible to store partitions of size 1."
- .into(),
- ));
- }
-
- let mut s_down = 1;
- let mut s_up = self.get_total_capacity()?;
- while s_down + 1 < s_up {
- g = self.generate_flow_graph(
- (s_down + s_up) / 2,
- zone_to_id,
- &empty_set,
- zone_redundancy,
- )?;
- g.compute_maximal_flow()?;
- if g.get_flow_value()? < (NB_PARTITIONS * self.replication_factor) as i64 {
- s_up = (s_down + s_up) / 2;
- } else {
- s_down = (s_down + s_up) / 2;
- }
- }
-
- Ok(s_down)
- }
-
- fn generate_graph_vertices(nb_zones: usize, nb_nodes: usize) -> Vec<Vertex> {
- let mut vertices = vec![Vertex::Source, Vertex::Sink];
- for p in 0..NB_PARTITIONS {
- vertices.push(Vertex::Pup(p));
- vertices.push(Vertex::Pdown(p));
- for z in 0..nb_zones {
- vertices.push(Vertex::PZ(p, z));
- }
- }
- for n in 0..nb_nodes {
- vertices.push(Vertex::N(n));
- }
- vertices
- }
-
- /// Generates the graph to compute the maximal flow corresponding to the optimal
- /// partition assignment.
- /// exclude_assoc is the set of (partition, node) association that we are forbidden
- /// to use (hence we do not add the corresponding edge to the graph). This parameter
- /// is used to compute a first flow that uses only edges appearing in the previous
- /// assignment. This produces a solution that heuristically should be close to the
- /// previous one.
- fn generate_flow_graph(
- &self,
- partition_size: u64,
- zone_to_id: &HashMap<String, usize>,
- exclude_assoc: &HashSet<(usize, usize)>,
- zone_redundancy: usize,
- ) -> Result<Graph<FlowEdge>, Error> {
- let vertices =
- ClusterLayout::generate_graph_vertices(zone_to_id.len(), self.nongateway_nodes().len());
- let mut g = Graph::<FlowEdge>::new(&vertices);
- let nb_zones = zone_to_id.len();
- for p in 0..NB_PARTITIONS {
- g.add_edge(Vertex::Source, Vertex::Pup(p), zone_redundancy as u64)?;
- g.add_edge(
- Vertex::Source,
- Vertex::Pdown(p),
- (self.replication_factor - zone_redundancy) as u64,
- )?;
- for z in 0..nb_zones {
- g.add_edge(Vertex::Pup(p), Vertex::PZ(p, z), 1)?;
- g.add_edge(
- Vertex::Pdown(p),
- Vertex::PZ(p, z),
- self.replication_factor as u64,
- )?;
- }
- }
- for n in 0..self.nongateway_nodes().len() {
- let node_capacity = self.get_node_capacity(&self.node_id_vec[n])?;
- let node_zone = zone_to_id[self.get_node_zone(&self.node_id_vec[n])?];
- g.add_edge(Vertex::N(n), Vertex::Sink, node_capacity / partition_size)?;
- for p in 0..NB_PARTITIONS {
- if !exclude_assoc.contains(&(p, n)) {
- g.add_edge(Vertex::PZ(p, node_zone), Vertex::N(n), 1)?;
- }
- }
- }
- Ok(g)
- }
-
- /// This function computes a first optimal assignment (in the form of a flow graph).
- fn compute_candidate_assignment(
- &self,
- zone_to_id: &HashMap<String, usize>,
- prev_assign_opt: &Option<Vec<Vec<usize>>>,
- zone_redundancy: usize,
- ) -> Result<Graph<FlowEdge>, Error> {
- // We list the (partition,node) associations that are not used in the
- // previous assignment
- let mut exclude_edge = HashSet::<(usize, usize)>::new();
- if let Some(prev_assign) = prev_assign_opt {
- let nb_nodes = self.nongateway_nodes().len();
- for (p, prev_assign_p) in prev_assign.iter().enumerate() {
- for n in 0..nb_nodes {
- exclude_edge.insert((p, n));
- }
- for n in prev_assign_p.iter() {
- exclude_edge.remove(&(p, *n));
- }
- }
- }
-
- // We compute the best flow using only the edges used in the previous assignment
- let mut g = self.generate_flow_graph(
- self.partition_size,
- zone_to_id,
- &exclude_edge,
- zone_redundancy,
- )?;
- g.compute_maximal_flow()?;
-
- // We add the excluded edges and compute the maximal flow with the full graph.
- // The algorithm is such that it will start with the flow that we just computed
- // and find ameliorating paths from that.
- for (p, n) in exclude_edge.iter() {
- let node_zone = zone_to_id[self.get_node_zone(&self.node_id_vec[*n])?];
- g.add_edge(Vertex::PZ(*p, node_zone), Vertex::N(*n), 1)?;
- }
- g.compute_maximal_flow()?;
- Ok(g)
- }
-
- /// This function updates the flow graph gflow to minimize the distance between
- /// its corresponding assignment and the previous one
- fn minimize_rebalance_load(
- &self,
- gflow: &mut Graph<FlowEdge>,
- zone_to_id: &HashMap<String, usize>,
- prev_assign: &[Vec<usize>],
- ) -> Result<(), Error> {
- // We define a cost function on the edges (pairs of vertices) corresponding
- // to the distance between the two assignments.
- let mut cost = CostFunction::new();
- for (p, assoc_p) in prev_assign.iter().enumerate() {
- for n in assoc_p.iter() {
- let node_zone = zone_to_id[self.get_node_zone(&self.node_id_vec[*n])?];
- cost.insert((Vertex::PZ(p, node_zone), Vertex::N(*n)), -1);
- }
- }
-
- // We compute the maximal length of a simple path in gflow. It is used in the
- // Bellman-Ford algorithm in optimize_flow_with_cost to set the number
- // of iterations.
- let nb_nodes = self.nongateway_nodes().len();
- let path_length = 4 * nb_nodes;
- gflow.optimize_flow_with_cost(&cost, path_length)?;
-
- Ok(())
- }
-
- /// This function updates the assignment ring from the flow graph.
- fn update_ring_from_flow(
- &mut self,
- nb_zones: usize,
- gflow: &Graph<FlowEdge>,
- ) -> Result<(), Error> {
- self.ring_assignment_data = Vec::<CompactNodeType>::new();
- for p in 0..NB_PARTITIONS {
- for z in 0..nb_zones {
- let assoc_vertex = gflow.get_positive_flow_from(Vertex::PZ(p, z))?;
- for vertex in assoc_vertex.iter() {
- if let Vertex::N(n) = vertex {
- self.ring_assignment_data.push((*n).try_into().unwrap());
- }
- }
- }
- }
-
- if self.ring_assignment_data.len() != NB_PARTITIONS * self.replication_factor {
- return Err(Error::Message(
- "Critical Error : the association ring we produced does not \
- have the right size."
- .into(),
- ));
- }
- Ok(())
- }
-
- /// This function returns a message summing up the partition repartition of the new
- /// layout, and other statistics of the partition assignment computation.
- fn output_stat(
- &self,
- gflow: &Graph<FlowEdge>,
- prev_assign_opt: &Option<Vec<Vec<usize>>>,
- zone_to_id: &HashMap<String, usize>,
- id_to_zone: &[String],
- ) -> Result<Message, Error> {
- let mut msg = Message::new();
-
- let used_cap = self.partition_size * NB_PARTITIONS as u64 * self.replication_factor as u64;
- let total_cap = self.get_total_capacity()?;
- let percent_cap = 100.0 * (used_cap as f32) / (total_cap as f32);
- msg.push(format!(
- "Usable capacity / total cluster capacity: {} / {} ({:.1} %)",
- ByteSize::b(used_cap).to_string_as(false),
- ByteSize::b(total_cap).to_string_as(false),
- percent_cap
- ));
- msg.push(format!(
- "Effective capacity (replication factor {}): {}",
- self.replication_factor,
- ByteSize::b(used_cap / self.replication_factor as u64).to_string_as(false)
- ));
- if percent_cap < 80. {
- msg.push("".into());
- msg.push(
- "If the percentage is too low, it might be that the \
- cluster topology and redundancy constraints are forcing the use of nodes/zones with small \
- storage capacities."
- .into(),
- );
- msg.push(
- "You might want to move storage capacity between zones or relax the redundancy constraint."
- .into(),
- );
- msg.push(
- "See the detailed statistics below and look for saturated nodes/zones.".into(),
- );
- }
-
- // We define and fill in the following tables
- let storing_nodes = self.nongateway_nodes();
- let mut new_partitions = vec![0; storing_nodes.len()];
- let mut stored_partitions = vec![0; storing_nodes.len()];
-
- let mut new_partitions_zone = vec![0; id_to_zone.len()];
- let mut stored_partitions_zone = vec![0; id_to_zone.len()];
-
- for p in 0..NB_PARTITIONS {
- for z in 0..id_to_zone.len() {
- let pz_nodes = gflow.get_positive_flow_from(Vertex::PZ(p, z))?;
- if !pz_nodes.is_empty() {
- stored_partitions_zone[z] += 1;
- if let Some(prev_assign) = prev_assign_opt {
- let mut old_zones_of_p = Vec::<usize>::new();
- for n in prev_assign[p].iter() {
- old_zones_of_p
- .push(zone_to_id[self.get_node_zone(&self.node_id_vec[*n])?]);
- }
- if !old_zones_of_p.contains(&z) {
- new_partitions_zone[z] += 1;
- }
- }
- }
- for vert in pz_nodes.iter() {
- if let Vertex::N(n) = *vert {
- stored_partitions[n] += 1;
- if let Some(prev_assign) = prev_assign_opt {
- if !prev_assign[p].contains(&n) {
- new_partitions[n] += 1;
- }
- }
- }
- }
- }
- }
-
- if prev_assign_opt.is_none() {
- new_partitions = stored_partitions.clone();
- //new_partitions_zone = stored_partitions_zone.clone();
- }
-
- // We display the statistics
-
- msg.push("".into());
- if prev_assign_opt.is_some() {
- let total_new_partitions: usize = new_partitions.iter().sum();
- msg.push(format!(
- "A total of {} new copies of partitions need to be \
- transferred.",
- total_new_partitions
- ));
- msg.push("".into());
- }
-
- let mut table = vec![];
- for z in 0..id_to_zone.len() {
- let mut nodes_of_z = Vec::<usize>::new();
- for n in 0..storing_nodes.len() {
- if self.get_node_zone(&self.node_id_vec[n])? == id_to_zone[z] {
- nodes_of_z.push(n);
- }
- }
- let replicated_partitions: usize =
- nodes_of_z.iter().map(|n| stored_partitions[*n]).sum();
- table.push(format!(
- "{}\tTags\tPartitions\tCapacity\tUsable capacity",
- id_to_zone[z]
- ));
-
- let available_cap_z: u64 = self.partition_size * replicated_partitions as u64;
- let mut total_cap_z = 0;
- for n in nodes_of_z.iter() {
- total_cap_z += self.get_node_capacity(&self.node_id_vec[*n])?;
- }
- let percent_cap_z = 100.0 * (available_cap_z as f32) / (total_cap_z as f32);
-
- for n in nodes_of_z.iter() {
- let available_cap_n = stored_partitions[*n] as u64 * self.partition_size;
- let total_cap_n = self.get_node_capacity(&self.node_id_vec[*n])?;
- let tags_n = (self.node_role(&self.node_id_vec[*n]).ok_or("<??>"))?.tags_string();
- table.push(format!(
- " {:?}\t{}\t{} ({} new)\t{}\t{} ({:.1}%)",
- self.node_id_vec[*n],
- tags_n,
- stored_partitions[*n],
- new_partitions[*n],
- ByteSize::b(total_cap_n).to_string_as(false),
- ByteSize::b(available_cap_n).to_string_as(false),
- (available_cap_n as f32) / (total_cap_n as f32) * 100.0,
- ));
- }
-
- table.push(format!(
- " TOTAL\t\t{} ({} unique)\t{}\t{} ({:.1}%)",
- replicated_partitions,
- stored_partitions_zone[z],
- //new_partitions_zone[z],
- ByteSize::b(total_cap_z).to_string_as(false),
- ByteSize::b(available_cap_z).to_string_as(false),
- percent_cap_z
- ));
- table.push("".into());
- }
- msg.push(format_table::format_table_to_string(table));
-
- Ok(msg)
- }
-}
-
-// ====================================================================================
-
-#[cfg(test)]
-mod tests {
- use super::{Error, *};
- use std::cmp::min;
-
- // This function checks that the partition size S computed is at least better than the
- // one given by a very naive algorithm. To do so, we try to run the naive algorithm
- // assuming a partion size of S+1. If we succed, it means that the optimal assignment
- // was not optimal. The naive algorithm is the following :
- // - we compute the max number of partitions associated to every node, capped at the
- // partition number. It gives the number of tokens of every node.
- // - every zone has a number of tokens equal to the sum of the tokens of its nodes.
- // - we cycle over the partitions and associate zone tokens while respecting the
- // zone redundancy constraint.
- // NOTE: the naive algorithm is not optimal. Counter example:
- // take nb_partition = 3 ; replication_factor = 5; redundancy = 4;
- // number of tokens by zone : (A, 4), (B,1), (C,4), (D, 4), (E, 2)
- // With these parameters, the naive algo fails, whereas there is a solution:
- // (A,A,C,D,E) , (A,B,C,D,D) (A,C,C,D,E)
- fn check_against_naive(cl: &ClusterLayout) -> Result<bool, Error> {
- let over_size = cl.partition_size + 1;
- let mut zone_token = HashMap::<String, usize>::new();
-
- let (zones, zone_to_id) = cl.generate_nongateway_zone_ids()?;
-
- if zones.is_empty() {
- return Ok(false);
- }
-
- for z in zones.iter() {
- zone_token.insert(z.clone(), 0);
- }
- for uuid in cl.nongateway_nodes().iter() {
- let z = cl.get_node_zone(uuid)?;
- let c = cl.get_node_capacity(uuid)?;
- zone_token.insert(
- z.clone(),
- zone_token[&z] + min(NB_PARTITIONS, (c / over_size) as usize),
- );
- }
-
- // For every partition, we count the number of zone already associated and
- // the name of the last zone associated
-
- let mut id_zone_token = vec![0; zones.len()];
- for (z, t) in zone_token.iter() {
- id_zone_token[zone_to_id[z]] = *t;
- }
-
- let mut nb_token = vec![0; NB_PARTITIONS];
- let mut last_zone = vec![zones.len(); NB_PARTITIONS];
-
- let mut curr_zone = 0;
-
- let redundancy = cl.effective_zone_redundancy();
-
- for replic in 0..cl.replication_factor {
- for p in 0..NB_PARTITIONS {
- while id_zone_token[curr_zone] == 0
- || (last_zone[p] == curr_zone
- && redundancy - nb_token[p] <= cl.replication_factor - replic)
- {
- curr_zone += 1;
- if curr_zone >= zones.len() {
- return Ok(true);
- }
- }
- id_zone_token[curr_zone] -= 1;
- if last_zone[p] != curr_zone {
- nb_token[p] += 1;
- last_zone[p] = curr_zone;
- }
- }
- }
-
- return Ok(false);
- }
-
- fn show_msg(msg: &Message) {
- for s in msg.iter() {
- println!("{}", s);
- }
- }
-
- fn update_layout(
- cl: &mut ClusterLayout,
- node_id_vec: &Vec<u8>,
- node_capacity_vec: &Vec<u64>,
- node_zone_vec: &Vec<String>,
- zone_redundancy: usize,
- ) {
- for i in 0..node_id_vec.len() {
- if let Some(x) = FixedBytes32::try_from(&[i as u8; 32]) {
- cl.node_id_vec.push(x);
- }
-
- let update = cl.staging_roles.update_mutator(
- cl.node_id_vec[i],
- NodeRoleV(Some(NodeRole {
- zone: (node_zone_vec[i].to_string()),
- capacity: (Some(node_capacity_vec[i])),
- tags: (vec![]),
- })),
- );
- cl.staging_roles.merge(&update);
- }
- cl.staging_parameters.update(LayoutParameters {
- zone_redundancy: ZoneRedundancy::AtLeast(zone_redundancy),
- });
- cl.staging_hash = cl.calculate_staging_hash();
- }
-
- #[test]
- fn test_assignment() {
- let mut node_id_vec = vec![1, 2, 3];
- let mut node_capacity_vec = vec![4000, 1000, 2000];
- let mut node_zone_vec = vec!["A", "B", "C"]
- .into_iter()
- .map(|x| x.to_string())
- .collect();
-
- let mut cl = ClusterLayout::new(3);
- update_layout(&mut cl, &node_id_vec, &node_capacity_vec, &node_zone_vec, 3);
- let v = cl.version;
- let (mut cl, msg) = cl.apply_staged_changes(Some(v + 1)).unwrap();
- show_msg(&msg);
- assert_eq!(cl.check(), Ok(()));
- assert!(matches!(check_against_naive(&cl), Ok(true)));
-
- node_id_vec = vec![1, 2, 3, 4, 5, 6, 7, 8, 9];
- node_capacity_vec = vec![4000, 1000, 1000, 3000, 1000, 1000, 2000, 10000, 2000];
- node_zone_vec = vec!["A", "B", "C", "C", "C", "B", "G", "H", "I"]
- .into_iter()
- .map(|x| x.to_string())
- .collect();
- update_layout(&mut cl, &node_id_vec, &node_capacity_vec, &node_zone_vec, 2);
- let v = cl.version;
- let (mut cl, msg) = cl.apply_staged_changes(Some(v + 1)).unwrap();
- show_msg(&msg);
- assert_eq!(cl.check(), Ok(()));
- assert!(matches!(check_against_naive(&cl), Ok(true)));
-
- node_capacity_vec = vec![4000, 1000, 2000, 7000, 1000, 1000, 2000, 10000, 2000];
- update_layout(&mut cl, &node_id_vec, &node_capacity_vec, &node_zone_vec, 3);
- let v = cl.version;
- let (mut cl, msg) = cl.apply_staged_changes(Some(v + 1)).unwrap();
- show_msg(&msg);
- assert_eq!(cl.check(), Ok(()));
- assert!(matches!(check_against_naive(&cl), Ok(true)));
-
- node_capacity_vec = vec![
- 4000000, 4000000, 2000000, 7000000, 1000000, 9000000, 2000000, 10000, 2000000,
- ];
- update_layout(&mut cl, &node_id_vec, &node_capacity_vec, &node_zone_vec, 1);
- let v = cl.version;
- let (cl, msg) = cl.apply_staged_changes(Some(v + 1)).unwrap();
- show_msg(&msg);
- assert_eq!(cl.check(), Ok(()));
- assert!(matches!(check_against_naive(&cl), Ok(true)));
- }
-}