diff options
author | Alex Auvolat <alex@adnab.me> | 2023-11-09 11:19:43 +0100 |
---|---|---|
committer | Alex Auvolat <alex@adnab.me> | 2023-11-09 11:19:43 +0100 |
commit | 523d2ecb9511f74e144cd116b942d6c1bf0f546d (patch) | |
tree | 7ba0323fb691eac4f05308676cd24771a8a6a8bb /src/rpc/graph_algo.rs | |
parent | 1da0a5676edcd20fc5c7412596edb5772da9f606 (diff) | |
download | garage-523d2ecb9511f74e144cd116b942d6c1bf0f546d.tar.gz garage-523d2ecb9511f74e144cd116b942d6c1bf0f546d.zip |
layout: use separate CRDT for staged layout changes
Diffstat (limited to 'src/rpc/graph_algo.rs')
-rw-r--r-- | src/rpc/graph_algo.rs | 415 |
1 files changed, 0 insertions, 415 deletions
diff --git a/src/rpc/graph_algo.rs b/src/rpc/graph_algo.rs deleted file mode 100644 index d8c6c9b9..00000000 --- a/src/rpc/graph_algo.rs +++ /dev/null @@ -1,415 +0,0 @@ -//! This module deals with graph algorithms. -//! It is used in layout.rs to build the partition to node assignment. - -use rand::prelude::{SeedableRng, SliceRandom}; -use std::cmp::{max, min}; -use std::collections::HashMap; -use std::collections::VecDeque; - -/// Vertex data structures used in all the graphs used in layout.rs. -/// usize parameters correspond to node/zone/partitions ids. -/// To understand the vertex roles below, please refer to the formal description -/// of the layout computation algorithm. -#[derive(Clone, Copy, Debug, PartialEq, Eq, Hash)] -pub enum Vertex { - Source, - Pup(usize), // The vertex p+ of partition p - Pdown(usize), // The vertex p- of partition p - PZ(usize, usize), // The vertex corresponding to x_(partition p, zone z) - N(usize), // The vertex corresponding to node n - Sink, -} - -/// Edge data structure for the flow algorithm. -#[derive(Clone, Copy, Debug)] -pub struct FlowEdge { - cap: u64, // flow maximal capacity of the edge - flow: i64, // flow value on the edge - dest: usize, // destination vertex id - rev: usize, // index of the reversed edge (v, self) in the edge list of vertex v -} - -/// Edge data structure for the detection of negative cycles. -#[derive(Clone, Copy, Debug)] -pub struct WeightedEdge { - w: i64, // weight of the edge - dest: usize, -} - -pub trait Edge: Clone + Copy {} -impl Edge for FlowEdge {} -impl Edge for WeightedEdge {} - -/// Struct for the graph structure. We do encapsulation here to be able to both -/// provide user friendly Vertex enum to address vertices, and to use internally usize -/// indices and Vec instead of HashMap in the graph algorithm to optimize execution speed. -pub struct Graph<E: Edge> { - vertex_to_id: HashMap<Vertex, usize>, - id_to_vertex: Vec<Vertex>, - - // The graph is stored as an adjacency list - graph: Vec<Vec<E>>, -} - -pub type CostFunction = HashMap<(Vertex, Vertex), i64>; - -impl<E: Edge> Graph<E> { - pub fn new(vertices: &[Vertex]) -> Self { - let mut map = HashMap::<Vertex, usize>::new(); - for (i, vert) in vertices.iter().enumerate() { - map.insert(*vert, i); - } - Graph::<E> { - vertex_to_id: map, - id_to_vertex: vertices.to_vec(), - graph: vec![Vec::<E>::new(); vertices.len()], - } - } - - fn get_vertex_id(&self, v: &Vertex) -> Result<usize, String> { - self.vertex_to_id - .get(v) - .cloned() - .ok_or_else(|| format!("The graph does not contain vertex {:?}", v)) - } -} - -impl Graph<FlowEdge> { - /// This function adds a directed edge to the graph with capacity c, and the - /// corresponding reversed edge with capacity 0. - pub fn add_edge(&mut self, u: Vertex, v: Vertex, c: u64) -> Result<(), String> { - let idu = self.get_vertex_id(&u)?; - let idv = self.get_vertex_id(&v)?; - if idu == idv { - return Err("Cannot add edge from vertex to itself in flow graph".into()); - } - - let rev_u = self.graph[idu].len(); - let rev_v = self.graph[idv].len(); - self.graph[idu].push(FlowEdge { - cap: c, - dest: idv, - flow: 0, - rev: rev_v, - }); - self.graph[idv].push(FlowEdge { - cap: 0, - dest: idu, - flow: 0, - rev: rev_u, - }); - Ok(()) - } - - /// This function returns the list of vertices that receive a positive flow from - /// vertex v. - pub fn get_positive_flow_from(&self, v: Vertex) -> Result<Vec<Vertex>, String> { - let idv = self.get_vertex_id(&v)?; - let mut result = Vec::<Vertex>::new(); - for edge in self.graph[idv].iter() { - if edge.flow > 0 { - result.push(self.id_to_vertex[edge.dest]); - } - } - Ok(result) - } - - /// This function returns the value of the flow incoming to v. - pub fn get_inflow(&self, v: Vertex) -> Result<i64, String> { - let idv = self.get_vertex_id(&v)?; - let mut result = 0; - for edge in self.graph[idv].iter() { - result += max(0, self.graph[edge.dest][edge.rev].flow); - } - Ok(result) - } - - /// This function returns the value of the flow outgoing from v. - pub fn get_outflow(&self, v: Vertex) -> Result<i64, String> { - let idv = self.get_vertex_id(&v)?; - let mut result = 0; - for edge in self.graph[idv].iter() { - result += max(0, edge.flow); - } - Ok(result) - } - - /// This function computes the flow total value by computing the outgoing flow - /// from the source. - pub fn get_flow_value(&mut self) -> Result<i64, String> { - self.get_outflow(Vertex::Source) - } - - /// This function shuffles the order of the edge lists. It keeps the ids of the - /// reversed edges consistent. - fn shuffle_edges(&mut self) { - // We use deterministic randomness so that the layout calculation algorihtm - // will output the same thing every time it is run. This way, the results - // pre-calculated in `garage layout show` will match exactly those used - // in practice with `garage layout apply` - let mut rng = rand::rngs::StdRng::from_seed([0x12u8; 32]); - for i in 0..self.graph.len() { - self.graph[i].shuffle(&mut rng); - // We need to update the ids of the reverse edges. - for j in 0..self.graph[i].len() { - let target_v = self.graph[i][j].dest; - let target_rev = self.graph[i][j].rev; - self.graph[target_v][target_rev].rev = j; - } - } - } - - /// Computes an upper bound of the flow on the graph - pub fn flow_upper_bound(&self) -> Result<u64, String> { - let idsource = self.get_vertex_id(&Vertex::Source)?; - let mut flow_upper_bound = 0; - for edge in self.graph[idsource].iter() { - flow_upper_bound += edge.cap; - } - Ok(flow_upper_bound) - } - - /// This function computes the maximal flow using Dinic's algorithm. It starts with - /// the flow values already present in the graph. So it is possible to add some edge to - /// the graph, compute a flow, add other edges, update the flow. - pub fn compute_maximal_flow(&mut self) -> Result<(), String> { - let idsource = self.get_vertex_id(&Vertex::Source)?; - let idsink = self.get_vertex_id(&Vertex::Sink)?; - - let nb_vertices = self.graph.len(); - - let flow_upper_bound = self.flow_upper_bound()?; - - // To ensure the dispersion of the associations generated by the - // assignment, we shuffle the neighbours of the nodes. Hence, - // the vertices do not consider their neighbours in the same order. - self.shuffle_edges(); - - // We run Dinic's max flow algorithm - loop { - // We build the level array from Dinic's algorithm. - let mut level = vec![None; nb_vertices]; - - let mut fifo = VecDeque::new(); - fifo.push_back((idsource, 0)); - while let Some((id, lvl)) = fifo.pop_front() { - if level[id].is_none() { - // it means id has not yet been reached - level[id] = Some(lvl); - for edge in self.graph[id].iter() { - if edge.cap as i64 - edge.flow > 0 { - fifo.push_back((edge.dest, lvl + 1)); - } - } - } - } - if level[idsink].is_none() { - // There is no residual flow - break; - } - // Now we run DFS respecting the level array - let mut next_nbd = vec![0; nb_vertices]; - let mut lifo = Vec::new(); - - lifo.push((idsource, flow_upper_bound)); - - while let Some((id, f)) = lifo.last().cloned() { - if id == idsink { - // The DFS reached the sink, we can add a - // residual flow. - lifo.pop(); - while let Some((id, _)) = lifo.pop() { - let nbd = next_nbd[id]; - self.graph[id][nbd].flow += f as i64; - let id_rev = self.graph[id][nbd].dest; - let nbd_rev = self.graph[id][nbd].rev; - self.graph[id_rev][nbd_rev].flow -= f as i64; - } - lifo.push((idsource, flow_upper_bound)); - continue; - } - // else we did not reach the sink - let nbd = next_nbd[id]; - if nbd >= self.graph[id].len() { - // There is nothing to explore from id anymore - lifo.pop(); - if let Some((parent, _)) = lifo.last() { - next_nbd[*parent] += 1; - } - continue; - } - // else we can try to send flow from id to its nbd - let new_flow = min( - f as i64, - self.graph[id][nbd].cap as i64 - self.graph[id][nbd].flow, - ) as u64; - if new_flow == 0 { - next_nbd[id] += 1; - continue; - } - if let (Some(lvldest), Some(lvlid)) = (level[self.graph[id][nbd].dest], level[id]) { - if lvldest <= lvlid { - // We cannot send flow to nbd. - next_nbd[id] += 1; - continue; - } - } - // otherwise, we send flow to nbd. - lifo.push((self.graph[id][nbd].dest, new_flow)); - } - } - Ok(()) - } - - /// This function takes a flow, and a cost function on the edges, and tries to find an - /// equivalent flow with a better cost, by finding improving overflow cycles. It uses - /// as subroutine the Bellman Ford algorithm run up to path_length. - /// We assume that the cost of edge (u,v) is the opposite of the cost of (v,u), and - /// only one needs to be present in the cost function. - pub fn optimize_flow_with_cost( - &mut self, - cost: &CostFunction, - path_length: usize, - ) -> Result<(), String> { - // We build the weighted graph g where we will look for negative cycle - let mut gf = self.build_cost_graph(cost)?; - let mut cycles = gf.list_negative_cycles(path_length); - while !cycles.is_empty() { - // we enumerate negative cycles - for c in cycles.iter() { - for i in 0..c.len() { - // We add one flow unit to the edge (u,v) of cycle c - let idu = self.vertex_to_id[&c[i]]; - let idv = self.vertex_to_id[&c[(i + 1) % c.len()]]; - for j in 0..self.graph[idu].len() { - // since idu appears at most once in the cycles, we enumerate every - // edge at most once. - let edge = self.graph[idu][j]; - if edge.dest == idv { - self.graph[idu][j].flow += 1; - self.graph[idv][edge.rev].flow -= 1; - break; - } - } - } - } - - gf = self.build_cost_graph(cost)?; - cycles = gf.list_negative_cycles(path_length); - } - Ok(()) - } - - /// Construct the weighted graph G_f from the flow and the cost function - fn build_cost_graph(&self, cost: &CostFunction) -> Result<Graph<WeightedEdge>, String> { - let mut g = Graph::<WeightedEdge>::new(&self.id_to_vertex); - let nb_vertices = self.id_to_vertex.len(); - for i in 0..nb_vertices { - for edge in self.graph[i].iter() { - if edge.cap as i64 - edge.flow > 0 { - // It is possible to send overflow through this edge - let u = self.id_to_vertex[i]; - let v = self.id_to_vertex[edge.dest]; - if cost.contains_key(&(u, v)) { - g.add_edge(u, v, cost[&(u, v)])?; - } else if cost.contains_key(&(v, u)) { - g.add_edge(u, v, -cost[&(v, u)])?; - } else { - g.add_edge(u, v, 0)?; - } - } - } - } - Ok(g) - } -} - -impl Graph<WeightedEdge> { - /// This function adds a single directed weighted edge to the graph. - pub fn add_edge(&mut self, u: Vertex, v: Vertex, w: i64) -> Result<(), String> { - let idu = self.get_vertex_id(&u)?; - let idv = self.get_vertex_id(&v)?; - self.graph[idu].push(WeightedEdge { w, dest: idv }); - Ok(()) - } - - /// This function lists the negative cycles it manages to find after path_length - /// iterations of the main loop of the Bellman-Ford algorithm. For the classical - /// algorithm, path_length needs to be equal to the number of vertices. However, - /// for particular graph structures like in our case, the algorithm is still correct - /// when path_length is the length of the longest possible simple path. - /// See the formal description of the algorithm for more details. - fn list_negative_cycles(&self, path_length: usize) -> Vec<Vec<Vertex>> { - let nb_vertices = self.graph.len(); - - // We start with every vertex at distance 0 of some imaginary extra -1 vertex. - let mut distance = vec![0; nb_vertices]; - // The prev vector collects for every vertex from where does the shortest path come - let mut prev = vec![None; nb_vertices]; - - for _ in 0..path_length + 1 { - for id in 0..nb_vertices { - for e in self.graph[id].iter() { - if distance[id] + e.w < distance[e.dest] { - distance[e.dest] = distance[id] + e.w; - prev[e.dest] = Some(id); - } - } - } - } - - // If self.graph contains a negative cycle, then at this point the graph described - // by prev (which is a directed 1-forest/functional graph) - // must contain a cycle. We list the cycles of prev. - let cycles_prev = cycles_of_1_forest(&prev); - - // Remark that the cycle in prev is in the reverse order compared to the cycle - // in the graph. Thus the .rev(). - return cycles_prev - .iter() - .map(|cycle| { - cycle - .iter() - .rev() - .map(|id| self.id_to_vertex[*id]) - .collect() - }) - .collect(); - } -} - -/// This function returns the list of cycles of a directed 1 forest. It does not -/// check for the consistency of the input. -fn cycles_of_1_forest(forest: &[Option<usize>]) -> Vec<Vec<usize>> { - let mut cycles = Vec::<Vec<usize>>::new(); - let mut time_of_discovery = vec![None; forest.len()]; - - for t in 0..forest.len() { - let mut id = t; - // while we are on a valid undiscovered node - while time_of_discovery[id].is_none() { - time_of_discovery[id] = Some(t); - if let Some(i) = forest[id] { - id = i; - } else { - break; - } - } - if forest[id].is_some() && time_of_discovery[id] == Some(t) { - // We discovered an id that we explored at this iteration t. - // It means we are on a cycle - let mut cy = vec![id; 1]; - let mut id2 = id; - while let Some(id_next) = forest[id2] { - id2 = id_next; - if id2 != id { - cy.push(id2); - } else { - break; - } - } - cycles.push(cy); - } - } - cycles -} |