aboutsummaryrefslogtreecommitdiff
path: root/src/rpc/graph_algo.rs
diff options
context:
space:
mode:
authorAlex Auvolat <alex@adnab.me>2023-11-09 11:19:43 +0100
committerAlex Auvolat <alex@adnab.me>2023-11-09 11:19:43 +0100
commit523d2ecb9511f74e144cd116b942d6c1bf0f546d (patch)
tree7ba0323fb691eac4f05308676cd24771a8a6a8bb /src/rpc/graph_algo.rs
parent1da0a5676edcd20fc5c7412596edb5772da9f606 (diff)
downloadgarage-523d2ecb9511f74e144cd116b942d6c1bf0f546d.tar.gz
garage-523d2ecb9511f74e144cd116b942d6c1bf0f546d.zip
layout: use separate CRDT for staged layout changes
Diffstat (limited to 'src/rpc/graph_algo.rs')
-rw-r--r--src/rpc/graph_algo.rs415
1 files changed, 0 insertions, 415 deletions
diff --git a/src/rpc/graph_algo.rs b/src/rpc/graph_algo.rs
deleted file mode 100644
index d8c6c9b9..00000000
--- a/src/rpc/graph_algo.rs
+++ /dev/null
@@ -1,415 +0,0 @@
-//! This module deals with graph algorithms.
-//! It is used in layout.rs to build the partition to node assignment.
-
-use rand::prelude::{SeedableRng, SliceRandom};
-use std::cmp::{max, min};
-use std::collections::HashMap;
-use std::collections::VecDeque;
-
-/// Vertex data structures used in all the graphs used in layout.rs.
-/// usize parameters correspond to node/zone/partitions ids.
-/// To understand the vertex roles below, please refer to the formal description
-/// of the layout computation algorithm.
-#[derive(Clone, Copy, Debug, PartialEq, Eq, Hash)]
-pub enum Vertex {
- Source,
- Pup(usize), // The vertex p+ of partition p
- Pdown(usize), // The vertex p- of partition p
- PZ(usize, usize), // The vertex corresponding to x_(partition p, zone z)
- N(usize), // The vertex corresponding to node n
- Sink,
-}
-
-/// Edge data structure for the flow algorithm.
-#[derive(Clone, Copy, Debug)]
-pub struct FlowEdge {
- cap: u64, // flow maximal capacity of the edge
- flow: i64, // flow value on the edge
- dest: usize, // destination vertex id
- rev: usize, // index of the reversed edge (v, self) in the edge list of vertex v
-}
-
-/// Edge data structure for the detection of negative cycles.
-#[derive(Clone, Copy, Debug)]
-pub struct WeightedEdge {
- w: i64, // weight of the edge
- dest: usize,
-}
-
-pub trait Edge: Clone + Copy {}
-impl Edge for FlowEdge {}
-impl Edge for WeightedEdge {}
-
-/// Struct for the graph structure. We do encapsulation here to be able to both
-/// provide user friendly Vertex enum to address vertices, and to use internally usize
-/// indices and Vec instead of HashMap in the graph algorithm to optimize execution speed.
-pub struct Graph<E: Edge> {
- vertex_to_id: HashMap<Vertex, usize>,
- id_to_vertex: Vec<Vertex>,
-
- // The graph is stored as an adjacency list
- graph: Vec<Vec<E>>,
-}
-
-pub type CostFunction = HashMap<(Vertex, Vertex), i64>;
-
-impl<E: Edge> Graph<E> {
- pub fn new(vertices: &[Vertex]) -> Self {
- let mut map = HashMap::<Vertex, usize>::new();
- for (i, vert) in vertices.iter().enumerate() {
- map.insert(*vert, i);
- }
- Graph::<E> {
- vertex_to_id: map,
- id_to_vertex: vertices.to_vec(),
- graph: vec![Vec::<E>::new(); vertices.len()],
- }
- }
-
- fn get_vertex_id(&self, v: &Vertex) -> Result<usize, String> {
- self.vertex_to_id
- .get(v)
- .cloned()
- .ok_or_else(|| format!("The graph does not contain vertex {:?}", v))
- }
-}
-
-impl Graph<FlowEdge> {
- /// This function adds a directed edge to the graph with capacity c, and the
- /// corresponding reversed edge with capacity 0.
- pub fn add_edge(&mut self, u: Vertex, v: Vertex, c: u64) -> Result<(), String> {
- let idu = self.get_vertex_id(&u)?;
- let idv = self.get_vertex_id(&v)?;
- if idu == idv {
- return Err("Cannot add edge from vertex to itself in flow graph".into());
- }
-
- let rev_u = self.graph[idu].len();
- let rev_v = self.graph[idv].len();
- self.graph[idu].push(FlowEdge {
- cap: c,
- dest: idv,
- flow: 0,
- rev: rev_v,
- });
- self.graph[idv].push(FlowEdge {
- cap: 0,
- dest: idu,
- flow: 0,
- rev: rev_u,
- });
- Ok(())
- }
-
- /// This function returns the list of vertices that receive a positive flow from
- /// vertex v.
- pub fn get_positive_flow_from(&self, v: Vertex) -> Result<Vec<Vertex>, String> {
- let idv = self.get_vertex_id(&v)?;
- let mut result = Vec::<Vertex>::new();
- for edge in self.graph[idv].iter() {
- if edge.flow > 0 {
- result.push(self.id_to_vertex[edge.dest]);
- }
- }
- Ok(result)
- }
-
- /// This function returns the value of the flow incoming to v.
- pub fn get_inflow(&self, v: Vertex) -> Result<i64, String> {
- let idv = self.get_vertex_id(&v)?;
- let mut result = 0;
- for edge in self.graph[idv].iter() {
- result += max(0, self.graph[edge.dest][edge.rev].flow);
- }
- Ok(result)
- }
-
- /// This function returns the value of the flow outgoing from v.
- pub fn get_outflow(&self, v: Vertex) -> Result<i64, String> {
- let idv = self.get_vertex_id(&v)?;
- let mut result = 0;
- for edge in self.graph[idv].iter() {
- result += max(0, edge.flow);
- }
- Ok(result)
- }
-
- /// This function computes the flow total value by computing the outgoing flow
- /// from the source.
- pub fn get_flow_value(&mut self) -> Result<i64, String> {
- self.get_outflow(Vertex::Source)
- }
-
- /// This function shuffles the order of the edge lists. It keeps the ids of the
- /// reversed edges consistent.
- fn shuffle_edges(&mut self) {
- // We use deterministic randomness so that the layout calculation algorihtm
- // will output the same thing every time it is run. This way, the results
- // pre-calculated in `garage layout show` will match exactly those used
- // in practice with `garage layout apply`
- let mut rng = rand::rngs::StdRng::from_seed([0x12u8; 32]);
- for i in 0..self.graph.len() {
- self.graph[i].shuffle(&mut rng);
- // We need to update the ids of the reverse edges.
- for j in 0..self.graph[i].len() {
- let target_v = self.graph[i][j].dest;
- let target_rev = self.graph[i][j].rev;
- self.graph[target_v][target_rev].rev = j;
- }
- }
- }
-
- /// Computes an upper bound of the flow on the graph
- pub fn flow_upper_bound(&self) -> Result<u64, String> {
- let idsource = self.get_vertex_id(&Vertex::Source)?;
- let mut flow_upper_bound = 0;
- for edge in self.graph[idsource].iter() {
- flow_upper_bound += edge.cap;
- }
- Ok(flow_upper_bound)
- }
-
- /// This function computes the maximal flow using Dinic's algorithm. It starts with
- /// the flow values already present in the graph. So it is possible to add some edge to
- /// the graph, compute a flow, add other edges, update the flow.
- pub fn compute_maximal_flow(&mut self) -> Result<(), String> {
- let idsource = self.get_vertex_id(&Vertex::Source)?;
- let idsink = self.get_vertex_id(&Vertex::Sink)?;
-
- let nb_vertices = self.graph.len();
-
- let flow_upper_bound = self.flow_upper_bound()?;
-
- // To ensure the dispersion of the associations generated by the
- // assignment, we shuffle the neighbours of the nodes. Hence,
- // the vertices do not consider their neighbours in the same order.
- self.shuffle_edges();
-
- // We run Dinic's max flow algorithm
- loop {
- // We build the level array from Dinic's algorithm.
- let mut level = vec![None; nb_vertices];
-
- let mut fifo = VecDeque::new();
- fifo.push_back((idsource, 0));
- while let Some((id, lvl)) = fifo.pop_front() {
- if level[id].is_none() {
- // it means id has not yet been reached
- level[id] = Some(lvl);
- for edge in self.graph[id].iter() {
- if edge.cap as i64 - edge.flow > 0 {
- fifo.push_back((edge.dest, lvl + 1));
- }
- }
- }
- }
- if level[idsink].is_none() {
- // There is no residual flow
- break;
- }
- // Now we run DFS respecting the level array
- let mut next_nbd = vec![0; nb_vertices];
- let mut lifo = Vec::new();
-
- lifo.push((idsource, flow_upper_bound));
-
- while let Some((id, f)) = lifo.last().cloned() {
- if id == idsink {
- // The DFS reached the sink, we can add a
- // residual flow.
- lifo.pop();
- while let Some((id, _)) = lifo.pop() {
- let nbd = next_nbd[id];
- self.graph[id][nbd].flow += f as i64;
- let id_rev = self.graph[id][nbd].dest;
- let nbd_rev = self.graph[id][nbd].rev;
- self.graph[id_rev][nbd_rev].flow -= f as i64;
- }
- lifo.push((idsource, flow_upper_bound));
- continue;
- }
- // else we did not reach the sink
- let nbd = next_nbd[id];
- if nbd >= self.graph[id].len() {
- // There is nothing to explore from id anymore
- lifo.pop();
- if let Some((parent, _)) = lifo.last() {
- next_nbd[*parent] += 1;
- }
- continue;
- }
- // else we can try to send flow from id to its nbd
- let new_flow = min(
- f as i64,
- self.graph[id][nbd].cap as i64 - self.graph[id][nbd].flow,
- ) as u64;
- if new_flow == 0 {
- next_nbd[id] += 1;
- continue;
- }
- if let (Some(lvldest), Some(lvlid)) = (level[self.graph[id][nbd].dest], level[id]) {
- if lvldest <= lvlid {
- // We cannot send flow to nbd.
- next_nbd[id] += 1;
- continue;
- }
- }
- // otherwise, we send flow to nbd.
- lifo.push((self.graph[id][nbd].dest, new_flow));
- }
- }
- Ok(())
- }
-
- /// This function takes a flow, and a cost function on the edges, and tries to find an
- /// equivalent flow with a better cost, by finding improving overflow cycles. It uses
- /// as subroutine the Bellman Ford algorithm run up to path_length.
- /// We assume that the cost of edge (u,v) is the opposite of the cost of (v,u), and
- /// only one needs to be present in the cost function.
- pub fn optimize_flow_with_cost(
- &mut self,
- cost: &CostFunction,
- path_length: usize,
- ) -> Result<(), String> {
- // We build the weighted graph g where we will look for negative cycle
- let mut gf = self.build_cost_graph(cost)?;
- let mut cycles = gf.list_negative_cycles(path_length);
- while !cycles.is_empty() {
- // we enumerate negative cycles
- for c in cycles.iter() {
- for i in 0..c.len() {
- // We add one flow unit to the edge (u,v) of cycle c
- let idu = self.vertex_to_id[&c[i]];
- let idv = self.vertex_to_id[&c[(i + 1) % c.len()]];
- for j in 0..self.graph[idu].len() {
- // since idu appears at most once in the cycles, we enumerate every
- // edge at most once.
- let edge = self.graph[idu][j];
- if edge.dest == idv {
- self.graph[idu][j].flow += 1;
- self.graph[idv][edge.rev].flow -= 1;
- break;
- }
- }
- }
- }
-
- gf = self.build_cost_graph(cost)?;
- cycles = gf.list_negative_cycles(path_length);
- }
- Ok(())
- }
-
- /// Construct the weighted graph G_f from the flow and the cost function
- fn build_cost_graph(&self, cost: &CostFunction) -> Result<Graph<WeightedEdge>, String> {
- let mut g = Graph::<WeightedEdge>::new(&self.id_to_vertex);
- let nb_vertices = self.id_to_vertex.len();
- for i in 0..nb_vertices {
- for edge in self.graph[i].iter() {
- if edge.cap as i64 - edge.flow > 0 {
- // It is possible to send overflow through this edge
- let u = self.id_to_vertex[i];
- let v = self.id_to_vertex[edge.dest];
- if cost.contains_key(&(u, v)) {
- g.add_edge(u, v, cost[&(u, v)])?;
- } else if cost.contains_key(&(v, u)) {
- g.add_edge(u, v, -cost[&(v, u)])?;
- } else {
- g.add_edge(u, v, 0)?;
- }
- }
- }
- }
- Ok(g)
- }
-}
-
-impl Graph<WeightedEdge> {
- /// This function adds a single directed weighted edge to the graph.
- pub fn add_edge(&mut self, u: Vertex, v: Vertex, w: i64) -> Result<(), String> {
- let idu = self.get_vertex_id(&u)?;
- let idv = self.get_vertex_id(&v)?;
- self.graph[idu].push(WeightedEdge { w, dest: idv });
- Ok(())
- }
-
- /// This function lists the negative cycles it manages to find after path_length
- /// iterations of the main loop of the Bellman-Ford algorithm. For the classical
- /// algorithm, path_length needs to be equal to the number of vertices. However,
- /// for particular graph structures like in our case, the algorithm is still correct
- /// when path_length is the length of the longest possible simple path.
- /// See the formal description of the algorithm for more details.
- fn list_negative_cycles(&self, path_length: usize) -> Vec<Vec<Vertex>> {
- let nb_vertices = self.graph.len();
-
- // We start with every vertex at distance 0 of some imaginary extra -1 vertex.
- let mut distance = vec![0; nb_vertices];
- // The prev vector collects for every vertex from where does the shortest path come
- let mut prev = vec![None; nb_vertices];
-
- for _ in 0..path_length + 1 {
- for id in 0..nb_vertices {
- for e in self.graph[id].iter() {
- if distance[id] + e.w < distance[e.dest] {
- distance[e.dest] = distance[id] + e.w;
- prev[e.dest] = Some(id);
- }
- }
- }
- }
-
- // If self.graph contains a negative cycle, then at this point the graph described
- // by prev (which is a directed 1-forest/functional graph)
- // must contain a cycle. We list the cycles of prev.
- let cycles_prev = cycles_of_1_forest(&prev);
-
- // Remark that the cycle in prev is in the reverse order compared to the cycle
- // in the graph. Thus the .rev().
- return cycles_prev
- .iter()
- .map(|cycle| {
- cycle
- .iter()
- .rev()
- .map(|id| self.id_to_vertex[*id])
- .collect()
- })
- .collect();
- }
-}
-
-/// This function returns the list of cycles of a directed 1 forest. It does not
-/// check for the consistency of the input.
-fn cycles_of_1_forest(forest: &[Option<usize>]) -> Vec<Vec<usize>> {
- let mut cycles = Vec::<Vec<usize>>::new();
- let mut time_of_discovery = vec![None; forest.len()];
-
- for t in 0..forest.len() {
- let mut id = t;
- // while we are on a valid undiscovered node
- while time_of_discovery[id].is_none() {
- time_of_discovery[id] = Some(t);
- if let Some(i) = forest[id] {
- id = i;
- } else {
- break;
- }
- }
- if forest[id].is_some() && time_of_discovery[id] == Some(t) {
- // We discovered an id that we explored at this iteration t.
- // It means we are on a cycle
- let mut cy = vec![id; 1];
- let mut id2 = id;
- while let Some(id_next) = forest[id2] {
- id2 = id_next;
- if id2 != id {
- cy.push(id2);
- } else {
- break;
- }
- }
- cycles.push(cy);
- }
- }
- cycles
-}