aboutsummaryrefslogtreecommitdiff
path: root/src/rpc/graph_algo.rs
diff options
context:
space:
mode:
authorAlex Auvolat <alex@adnab.me>2022-11-07 19:34:40 +0100
committerAlex Auvolat <alex@adnab.me>2022-11-07 20:11:30 +0100
commitea5afc251106b3f6e2d07f942ba1f88abeef8765 (patch)
treefe9679c408cbac8af18bb6400105ebc4a3bd1ad3 /src/rpc/graph_algo.rs
parent28d7a49f6365fadaffaa903cc10434c1ed28d564 (diff)
downloadgarage-ea5afc251106b3f6e2d07f942ba1f88abeef8765.tar.gz
garage-ea5afc251106b3f6e2d07f942ba1f88abeef8765.zip
Style improvements
Diffstat (limited to 'src/rpc/graph_algo.rs')
-rw-r--r--src/rpc/graph_algo.rs273
1 files changed, 132 insertions, 141 deletions
diff --git a/src/rpc/graph_algo.rs b/src/rpc/graph_algo.rs
index 5bd6cc51..1e4a819b 100644
--- a/src/rpc/graph_algo.rs
+++ b/src/rpc/graph_algo.rs
@@ -6,33 +6,33 @@ use std::cmp::{max, min};
use std::collections::HashMap;
use std::collections::VecDeque;
-///Vertex data structures used in all the graphs used in layout.rs.
-///usize parameters correspond to node/zone/partitions ids.
-///To understand the vertex roles below, please refer to the formal description
-///of the layout computation algorithm.
+/// Vertex data structures used in all the graphs used in layout.rs.
+/// usize parameters correspond to node/zone/partitions ids.
+/// To understand the vertex roles below, please refer to the formal description
+/// of the layout computation algorithm.
#[derive(Clone, Copy, Debug, PartialEq, Eq, Hash)]
pub enum Vertex {
Source,
- Pup(usize), //The vertex p+ of partition p
- Pdown(usize), //The vertex p- of partition p
- PZ(usize, usize), //The vertex corresponding to x_(partition p, zone z)
- N(usize), //The vertex corresponding to node n
+ Pup(usize), // The vertex p+ of partition p
+ Pdown(usize), // The vertex p- of partition p
+ PZ(usize, usize), // The vertex corresponding to x_(partition p, zone z)
+ N(usize), // The vertex corresponding to node n
Sink,
}
-///Edge data structure for the flow algorithm.
+/// Edge data structure for the flow algorithm.
#[derive(Clone, Copy, Debug)]
pub struct FlowEdge {
- cap: u32, //flow maximal capacity of the edge
- flow: i32, //flow value on the edge
- dest: usize, //destination vertex id
- rev: usize, //index of the reversed edge (v, self) in the edge list of vertex v
+ cap: u32, // flow maximal capacity of the edge
+ flow: i32, // flow value on the edge
+ dest: usize, // destination vertex id
+ rev: usize, // index of the reversed edge (v, self) in the edge list of vertex v
}
-///Edge data structure for the detection of negative cycles.
+/// Edge data structure for the detection of negative cycles.
#[derive(Clone, Copy, Debug)]
pub struct WeightedEdge {
- w: i32, //weight of the edge
+ w: i32, // weight of the edge
dest: usize,
}
@@ -40,14 +40,14 @@ pub trait Edge: Clone + Copy {}
impl Edge for FlowEdge {}
impl Edge for WeightedEdge {}
-///Struct for the graph structure. We do encapsulation here to be able to both
-///provide user friendly Vertex enum to address vertices, and to use internally usize
-///indices and Vec instead of HashMap in the graph algorithm to optimize execution speed.
+/// Struct for the graph structure. We do encapsulation here to be able to both
+/// provide user friendly Vertex enum to address vertices, and to use internally usize
+/// indices and Vec instead of HashMap in the graph algorithm to optimize execution speed.
pub struct Graph<E: Edge> {
- vertextoid: HashMap<Vertex, usize>,
- idtovertex: Vec<Vertex>,
+ vertex_to_id: HashMap<Vertex, usize>,
+ id_to_vertex: Vec<Vertex>,
- //The graph is stored as an adjacency list
+ // The graph is stored as an adjacency list
graph: Vec<Vec<E>>,
}
@@ -60,22 +60,30 @@ impl<E: Edge> Graph<E> {
map.insert(*vert, i);
}
Graph::<E> {
- vertextoid: map,
- idtovertex: vertices.to_vec(),
+ vertex_to_id: map,
+ id_to_vertex: vertices.to_vec(),
graph: vec![Vec::<E>::new(); vertices.len()],
}
}
+
+ fn get_vertex_id(&self, v: &Vertex) -> Result<usize, String> {
+ self.vertex_to_id
+ .get(v)
+ .cloned()
+ .ok_or_else(|| format!("The graph does not contain vertex {:?}", v))
+ }
}
impl Graph<FlowEdge> {
- ///This function adds a directed edge to the graph with capacity c, and the
- ///corresponding reversed edge with capacity 0.
+ /// This function adds a directed edge to the graph with capacity c, and the
+ /// corresponding reversed edge with capacity 0.
pub fn add_edge(&mut self, u: Vertex, v: Vertex, c: u32) -> Result<(), String> {
- if !self.vertextoid.contains_key(&u) || !self.vertextoid.contains_key(&v) {
- return Err("The graph does not contain the provided vertex.".to_string());
+ let idu = self.get_vertex_id(&u)?;
+ let idv = self.get_vertex_id(&v)?;
+ if idu == idv {
+ return Err("Cannot add edge from vertex to itself in flow graph".into());
}
- let idu = self.vertextoid[&u];
- let idv = self.vertextoid[&v];
+
let rev_u = self.graph[idu].len();
let rev_v = self.graph[idv].len();
self.graph[idu].push(FlowEdge {
@@ -93,28 +101,22 @@ impl Graph<FlowEdge> {
Ok(())
}
- ///This function returns the list of vertices that receive a positive flow from
- ///vertex v.
+ /// This function returns the list of vertices that receive a positive flow from
+ /// vertex v.
pub fn get_positive_flow_from(&self, v: Vertex) -> Result<Vec<Vertex>, String> {
- if !self.vertextoid.contains_key(&v) {
- return Err("The graph does not contain the provided vertex.".to_string());
- }
- let idv = self.vertextoid[&v];
+ let idv = self.get_vertex_id(&v)?;
let mut result = Vec::<Vertex>::new();
for edge in self.graph[idv].iter() {
if edge.flow > 0 {
- result.push(self.idtovertex[edge.dest]);
+ result.push(self.id_to_vertex[edge.dest]);
}
}
Ok(result)
}
- ///This function returns the value of the flow incoming to v.
+ /// This function returns the value of the flow incoming to v.
pub fn get_inflow(&self, v: Vertex) -> Result<i32, String> {
- if !self.vertextoid.contains_key(&v) {
- return Err("The graph does not contain the provided vertex.".to_string());
- }
- let idv = self.vertextoid[&v];
+ let idv = self.get_vertex_id(&v)?;
let mut result = 0;
for edge in self.graph[idv].iter() {
result += max(0, self.graph[edge.dest][edge.rev].flow);
@@ -122,12 +124,9 @@ impl Graph<FlowEdge> {
Ok(result)
}
- ///This function returns the value of the flow outgoing from v.
+ /// This function returns the value of the flow outgoing from v.
pub fn get_outflow(&self, v: Vertex) -> Result<i32, String> {
- if !self.vertextoid.contains_key(&v) {
- return Err("The graph does not contain the provided vertex.".to_string());
- }
- let idv = self.vertextoid[&v];
+ let idv = self.get_vertex_id(&v)?;
let mut result = 0;
for edge in self.graph[idv].iter() {
result += max(0, edge.flow);
@@ -135,19 +134,19 @@ impl Graph<FlowEdge> {
Ok(result)
}
- ///This function computes the flow total value by computing the outgoing flow
- ///from the source.
+ /// This function computes the flow total value by computing the outgoing flow
+ /// from the source.
pub fn get_flow_value(&mut self) -> Result<i32, String> {
self.get_outflow(Vertex::Source)
}
- ///This function shuffles the order of the edge lists. It keeps the ids of the
- ///reversed edges consistent.
+ /// This function shuffles the order of the edge lists. It keeps the ids of the
+ /// reversed edges consistent.
fn shuffle_edges(&mut self) {
let mut rng = rand::thread_rng();
for i in 0..self.graph.len() {
self.graph[i].shuffle(&mut rng);
- //We need to update the ids of the reverse edges.
+ // We need to update the ids of the reverse edges.
for j in 0..self.graph[i].len() {
let target_v = self.graph[i][j].dest;
let target_rev = self.graph[i][j].rev;
@@ -156,97 +155,86 @@ impl Graph<FlowEdge> {
}
}
- ///Computes an upper bound of the flow on the graph
- pub fn flow_upper_bound(&self) -> u32 {
- let idsource = self.vertextoid[&Vertex::Source];
+ /// Computes an upper bound of the flow on the graph
+ pub fn flow_upper_bound(&self) -> Result<u32, String> {
+ let idsource = self.get_vertex_id(&Vertex::Source)?;
let mut flow_upper_bound = 0;
for edge in self.graph[idsource].iter() {
flow_upper_bound += edge.cap;
}
- flow_upper_bound
+ Ok(flow_upper_bound)
}
- ///This function computes the maximal flow using Dinic's algorithm. It starts with
- ///the flow values already present in the graph. So it is possible to add some edge to
- ///the graph, compute a flow, add other edges, update the flow.
+ /// This function computes the maximal flow using Dinic's algorithm. It starts with
+ /// the flow values already present in the graph. So it is possible to add some edge to
+ /// the graph, compute a flow, add other edges, update the flow.
pub fn compute_maximal_flow(&mut self) -> Result<(), String> {
- if !self.vertextoid.contains_key(&Vertex::Source) {
- return Err("The graph does not contain a source.".to_string());
- }
- if !self.vertextoid.contains_key(&Vertex::Sink) {
- return Err("The graph does not contain a sink.".to_string());
- }
-
- let idsource = self.vertextoid[&Vertex::Source];
- let idsink = self.vertextoid[&Vertex::Sink];
+ let idsource = self.get_vertex_id(&Vertex::Source)?;
+ let idsink = self.get_vertex_id(&Vertex::Sink)?;
let nb_vertices = self.graph.len();
- let flow_upper_bound = self.flow_upper_bound();
+ let flow_upper_bound = self.flow_upper_bound()?;
- //To ensure the dispersion of the associations generated by the
- //assignation, we shuffle the neighbours of the nodes. Hence,
- //the vertices do not consider their neighbours in the same order.
+ // To ensure the dispersion of the associations generated by the
+ // assignation, we shuffle the neighbours of the nodes. Hence,
+ // the vertices do not consider their neighbours in the same order.
self.shuffle_edges();
- //We run Dinic's max flow algorithm
+ // We run Dinic's max flow algorithm
loop {
- //We build the level array from Dinic's algorithm.
+ // We build the level array from Dinic's algorithm.
let mut level = vec![None; nb_vertices];
let mut fifo = VecDeque::new();
fifo.push_back((idsource, 0));
- while !fifo.is_empty() {
- if let Some((id, lvl)) = fifo.pop_front() {
- if level[id] == None {
- //it means id has not yet been reached
- level[id] = Some(lvl);
- for edge in self.graph[id].iter() {
- if edge.cap as i32 - edge.flow > 0 {
- fifo.push_back((edge.dest, lvl + 1));
- }
+ while let Some((id, lvl)) = fifo.pop_front() {
+ if level[id] == None {
+ // it means id has not yet been reached
+ level[id] = Some(lvl);
+ for edge in self.graph[id].iter() {
+ if edge.cap as i32 - edge.flow > 0 {
+ fifo.push_back((edge.dest, lvl + 1));
}
}
}
}
if level[idsink] == None {
- //There is no residual flow
+ // There is no residual flow
break;
}
- //Now we run DFS respecting the level array
+ // Now we run DFS respecting the level array
let mut next_nbd = vec![0; nb_vertices];
- let mut lifo = VecDeque::new();
+ let mut lifo = Vec::new();
- lifo.push_back((idsource, flow_upper_bound));
+ lifo.push((idsource, flow_upper_bound));
- while let Some((id_tmp, f_tmp)) = lifo.back() {
- let id = *id_tmp;
- let f = *f_tmp;
+ while let Some((id, f)) = lifo.last().cloned() {
if id == idsink {
- //The DFS reached the sink, we can add a
- //residual flow.
- lifo.pop_back();
- while let Some((id, _)) = lifo.pop_back() {
+ // The DFS reached the sink, we can add a
+ // residual flow.
+ lifo.pop();
+ while let Some((id, _)) = lifo.pop() {
let nbd = next_nbd[id];
self.graph[id][nbd].flow += f as i32;
let id_rev = self.graph[id][nbd].dest;
let nbd_rev = self.graph[id][nbd].rev;
self.graph[id_rev][nbd_rev].flow -= f as i32;
}
- lifo.push_back((idsource, flow_upper_bound));
+ lifo.push((idsource, flow_upper_bound));
continue;
}
- //else we did not reach the sink
+ // else we did not reach the sink
let nbd = next_nbd[id];
if nbd >= self.graph[id].len() {
- //There is nothing to explore from id anymore
- lifo.pop_back();
- if let Some((parent, _)) = lifo.back() {
+ // There is nothing to explore from id anymore
+ lifo.pop();
+ if let Some((parent, _)) = lifo.last() {
next_nbd[*parent] += 1;
}
continue;
}
- //else we can try to send flow from id to its nbd
+ // else we can try to send flow from id to its nbd
let new_flow = min(
f as i32,
self.graph[id][nbd].cap as i32 - self.graph[id][nbd].flow,
@@ -257,19 +245,19 @@ impl Graph<FlowEdge> {
}
if let (Some(lvldest), Some(lvlid)) = (level[self.graph[id][nbd].dest], level[id]) {
if lvldest <= lvlid {
- //We cannot send flow to nbd.
+ // We cannot send flow to nbd.
next_nbd[id] += 1;
continue;
}
}
- //otherwise, we send flow to nbd.
- lifo.push_back((self.graph[id][nbd].dest, new_flow));
+ // otherwise, we send flow to nbd.
+ lifo.push((self.graph[id][nbd].dest, new_flow));
}
}
Ok(())
}
- ///This function takes a flow, and a cost function on the edges, and tries to find an
+ /// This function takes a flow, and a cost function on the edges, and tries to find an
/// equivalent flow with a better cost, by finding improving overflow cycles. It uses
/// as subroutine the Bellman Ford algorithm run up to path_length.
/// We assume that the cost of edge (u,v) is the opposite of the cost of (v,u), and
@@ -279,19 +267,19 @@ impl Graph<FlowEdge> {
cost: &CostFunction,
path_length: usize,
) -> Result<(), String> {
- //We build the weighted graph g where we will look for negative cycle
+ // We build the weighted graph g where we will look for negative cycle
let mut gf = self.build_cost_graph(cost)?;
let mut cycles = gf.list_negative_cycles(path_length);
while !cycles.is_empty() {
- //we enumerate negative cycles
+ // we enumerate negative cycles
for c in cycles.iter() {
for i in 0..c.len() {
- //We add one flow unit to the edge (u,v) of cycle c
- let idu = self.vertextoid[&c[i]];
- let idv = self.vertextoid[&c[(i + 1) % c.len()]];
+ // We add one flow unit to the edge (u,v) of cycle c
+ let idu = self.vertex_to_id[&c[i]];
+ let idv = self.vertex_to_id[&c[(i + 1) % c.len()]];
for j in 0..self.graph[idu].len() {
- //since idu appears at most once in the cycles, we enumerate every
- //edge at most once.
+ // since idu appears at most once in the cycles, we enumerate every
+ // edge at most once.
let edge = self.graph[idu][j];
if edge.dest == idv {
self.graph[idu][j].flow += 1;
@@ -308,16 +296,16 @@ impl Graph<FlowEdge> {
Ok(())
}
- ///Construct the weighted graph G_f from the flow and the cost function
+ /// Construct the weighted graph G_f from the flow and the cost function
fn build_cost_graph(&self, cost: &CostFunction) -> Result<Graph<WeightedEdge>, String> {
- let mut g = Graph::<WeightedEdge>::new(&self.idtovertex);
- let nb_vertices = self.idtovertex.len();
+ let mut g = Graph::<WeightedEdge>::new(&self.id_to_vertex);
+ let nb_vertices = self.id_to_vertex.len();
for i in 0..nb_vertices {
for edge in self.graph[i].iter() {
if edge.cap as i32 - edge.flow > 0 {
- //It is possible to send overflow through this edge
- let u = self.idtovertex[i];
- let v = self.idtovertex[edge.dest];
+ // It is possible to send overflow through this edge
+ let u = self.id_to_vertex[i];
+ let v = self.id_to_vertex[edge.dest];
if cost.contains_key(&(u, v)) {
g.add_edge(u, v, cost[&(u, v)])?;
} else if cost.contains_key(&(v, u)) {
@@ -333,29 +321,26 @@ impl Graph<FlowEdge> {
}
impl Graph<WeightedEdge> {
- ///This function adds a single directed weighted edge to the graph.
+ /// This function adds a single directed weighted edge to the graph.
pub fn add_edge(&mut self, u: Vertex, v: Vertex, w: i32) -> Result<(), String> {
- if !self.vertextoid.contains_key(&u) || !self.vertextoid.contains_key(&v) {
- return Err("The graph does not contain the provided vertex.".to_string());
- }
- let idu = self.vertextoid[&u];
- let idv = self.vertextoid[&v];
+ let idu = self.get_vertex_id(&u)?;
+ let idv = self.get_vertex_id(&v)?;
self.graph[idu].push(WeightedEdge { w, dest: idv });
Ok(())
}
- ///This function lists the negative cycles it manages to find after path_length
- ///iterations of the main loop of the Bellman-Ford algorithm. For the classical
- ///algorithm, path_length needs to be equal to the number of vertices. However,
- ///for particular graph structures like in our case, the algorithm is still correct
- ///when path_length is the length of the longest possible simple path.
- ///See the formal description of the algorithm for more details.
+ /// This function lists the negative cycles it manages to find after path_length
+ /// iterations of the main loop of the Bellman-Ford algorithm. For the classical
+ /// algorithm, path_length needs to be equal to the number of vertices. However,
+ /// for particular graph structures like in our case, the algorithm is still correct
+ /// when path_length is the length of the longest possible simple path.
+ /// See the formal description of the algorithm for more details.
fn list_negative_cycles(&self, path_length: usize) -> Vec<Vec<Vertex>> {
let nb_vertices = self.graph.len();
- //We start with every vertex at distance 0 of some imaginary extra -1 vertex.
+ // We start with every vertex at distance 0 of some imaginary extra -1 vertex.
let mut distance = vec![0; nb_vertices];
- //The prev vector collects for every vertex from where does the shortest path come
+ // The prev vector collects for every vertex from where does the shortest path come
let mut prev = vec![None; nb_vertices];
for _ in 0..path_length + 1 {
@@ -369,29 +354,35 @@ impl Graph<WeightedEdge> {
}
}
- //If self.graph contains a negative cycle, then at this point the graph described
- //by prev (which is a directed 1-forest/functional graph)
- //must contain a cycle. We list the cycles of prev.
+ // If self.graph contains a negative cycle, then at this point the graph described
+ // by prev (which is a directed 1-forest/functional graph)
+ // must contain a cycle. We list the cycles of prev.
let cycles_prev = cycles_of_1_forest(&prev);
- //Remark that the cycle in prev is in the reverse order compared to the cycle
- //in the graph. Thus the .rev().
+ // Remark that the cycle in prev is in the reverse order compared to the cycle
+ // in the graph. Thus the .rev().
return cycles_prev
.iter()
- .map(|cycle| cycle.iter().rev().map(|id| self.idtovertex[*id]).collect())
+ .map(|cycle| {
+ cycle
+ .iter()
+ .rev()
+ .map(|id| self.id_to_vertex[*id])
+ .collect()
+ })
.collect();
}
}
-///This function returns the list of cycles of a directed 1 forest. It does not
-///check for the consistency of the input.
+/// This function returns the list of cycles of a directed 1 forest. It does not
+/// check for the consistency of the input.
fn cycles_of_1_forest(forest: &[Option<usize>]) -> Vec<Vec<usize>> {
let mut cycles = Vec::<Vec<usize>>::new();
let mut time_of_discovery = vec![None; forest.len()];
for t in 0..forest.len() {
let mut id = t;
- //while we are on a valid undiscovered node
+ // while we are on a valid undiscovered node
while time_of_discovery[id] == None {
time_of_discovery[id] = Some(t);
if let Some(i) = forest[id] {
@@ -401,8 +392,8 @@ fn cycles_of_1_forest(forest: &[Option<usize>]) -> Vec<Vec<usize>> {
}
}
if forest[id] != None && time_of_discovery[id] == Some(t) {
- //We discovered an id that we explored at this iteration t.
- //It means we are on a cycle
+ // We discovered an id that we explored at this iteration t.
+ // It means we are on a cycle
let mut cy = vec![id; 1];
let mut id2 = id;
while let Some(id_next) = forest[id2] {