diff options
author | Alex Auvolat <alex@adnab.me> | 2022-11-07 19:34:40 +0100 |
---|---|---|
committer | Alex Auvolat <alex@adnab.me> | 2022-11-07 20:11:30 +0100 |
commit | ea5afc251106b3f6e2d07f942ba1f88abeef8765 (patch) | |
tree | fe9679c408cbac8af18bb6400105ebc4a3bd1ad3 /src/rpc/graph_algo.rs | |
parent | 28d7a49f6365fadaffaa903cc10434c1ed28d564 (diff) | |
download | garage-ea5afc251106b3f6e2d07f942ba1f88abeef8765.tar.gz garage-ea5afc251106b3f6e2d07f942ba1f88abeef8765.zip |
Style improvements
Diffstat (limited to 'src/rpc/graph_algo.rs')
-rw-r--r-- | src/rpc/graph_algo.rs | 273 |
1 files changed, 132 insertions, 141 deletions
diff --git a/src/rpc/graph_algo.rs b/src/rpc/graph_algo.rs index 5bd6cc51..1e4a819b 100644 --- a/src/rpc/graph_algo.rs +++ b/src/rpc/graph_algo.rs @@ -6,33 +6,33 @@ use std::cmp::{max, min}; use std::collections::HashMap; use std::collections::VecDeque; -///Vertex data structures used in all the graphs used in layout.rs. -///usize parameters correspond to node/zone/partitions ids. -///To understand the vertex roles below, please refer to the formal description -///of the layout computation algorithm. +/// Vertex data structures used in all the graphs used in layout.rs. +/// usize parameters correspond to node/zone/partitions ids. +/// To understand the vertex roles below, please refer to the formal description +/// of the layout computation algorithm. #[derive(Clone, Copy, Debug, PartialEq, Eq, Hash)] pub enum Vertex { Source, - Pup(usize), //The vertex p+ of partition p - Pdown(usize), //The vertex p- of partition p - PZ(usize, usize), //The vertex corresponding to x_(partition p, zone z) - N(usize), //The vertex corresponding to node n + Pup(usize), // The vertex p+ of partition p + Pdown(usize), // The vertex p- of partition p + PZ(usize, usize), // The vertex corresponding to x_(partition p, zone z) + N(usize), // The vertex corresponding to node n Sink, } -///Edge data structure for the flow algorithm. +/// Edge data structure for the flow algorithm. #[derive(Clone, Copy, Debug)] pub struct FlowEdge { - cap: u32, //flow maximal capacity of the edge - flow: i32, //flow value on the edge - dest: usize, //destination vertex id - rev: usize, //index of the reversed edge (v, self) in the edge list of vertex v + cap: u32, // flow maximal capacity of the edge + flow: i32, // flow value on the edge + dest: usize, // destination vertex id + rev: usize, // index of the reversed edge (v, self) in the edge list of vertex v } -///Edge data structure for the detection of negative cycles. +/// Edge data structure for the detection of negative cycles. #[derive(Clone, Copy, Debug)] pub struct WeightedEdge { - w: i32, //weight of the edge + w: i32, // weight of the edge dest: usize, } @@ -40,14 +40,14 @@ pub trait Edge: Clone + Copy {} impl Edge for FlowEdge {} impl Edge for WeightedEdge {} -///Struct for the graph structure. We do encapsulation here to be able to both -///provide user friendly Vertex enum to address vertices, and to use internally usize -///indices and Vec instead of HashMap in the graph algorithm to optimize execution speed. +/// Struct for the graph structure. We do encapsulation here to be able to both +/// provide user friendly Vertex enum to address vertices, and to use internally usize +/// indices and Vec instead of HashMap in the graph algorithm to optimize execution speed. pub struct Graph<E: Edge> { - vertextoid: HashMap<Vertex, usize>, - idtovertex: Vec<Vertex>, + vertex_to_id: HashMap<Vertex, usize>, + id_to_vertex: Vec<Vertex>, - //The graph is stored as an adjacency list + // The graph is stored as an adjacency list graph: Vec<Vec<E>>, } @@ -60,22 +60,30 @@ impl<E: Edge> Graph<E> { map.insert(*vert, i); } Graph::<E> { - vertextoid: map, - idtovertex: vertices.to_vec(), + vertex_to_id: map, + id_to_vertex: vertices.to_vec(), graph: vec![Vec::<E>::new(); vertices.len()], } } + + fn get_vertex_id(&self, v: &Vertex) -> Result<usize, String> { + self.vertex_to_id + .get(v) + .cloned() + .ok_or_else(|| format!("The graph does not contain vertex {:?}", v)) + } } impl Graph<FlowEdge> { - ///This function adds a directed edge to the graph with capacity c, and the - ///corresponding reversed edge with capacity 0. + /// This function adds a directed edge to the graph with capacity c, and the + /// corresponding reversed edge with capacity 0. pub fn add_edge(&mut self, u: Vertex, v: Vertex, c: u32) -> Result<(), String> { - if !self.vertextoid.contains_key(&u) || !self.vertextoid.contains_key(&v) { - return Err("The graph does not contain the provided vertex.".to_string()); + let idu = self.get_vertex_id(&u)?; + let idv = self.get_vertex_id(&v)?; + if idu == idv { + return Err("Cannot add edge from vertex to itself in flow graph".into()); } - let idu = self.vertextoid[&u]; - let idv = self.vertextoid[&v]; + let rev_u = self.graph[idu].len(); let rev_v = self.graph[idv].len(); self.graph[idu].push(FlowEdge { @@ -93,28 +101,22 @@ impl Graph<FlowEdge> { Ok(()) } - ///This function returns the list of vertices that receive a positive flow from - ///vertex v. + /// This function returns the list of vertices that receive a positive flow from + /// vertex v. pub fn get_positive_flow_from(&self, v: Vertex) -> Result<Vec<Vertex>, String> { - if !self.vertextoid.contains_key(&v) { - return Err("The graph does not contain the provided vertex.".to_string()); - } - let idv = self.vertextoid[&v]; + let idv = self.get_vertex_id(&v)?; let mut result = Vec::<Vertex>::new(); for edge in self.graph[idv].iter() { if edge.flow > 0 { - result.push(self.idtovertex[edge.dest]); + result.push(self.id_to_vertex[edge.dest]); } } Ok(result) } - ///This function returns the value of the flow incoming to v. + /// This function returns the value of the flow incoming to v. pub fn get_inflow(&self, v: Vertex) -> Result<i32, String> { - if !self.vertextoid.contains_key(&v) { - return Err("The graph does not contain the provided vertex.".to_string()); - } - let idv = self.vertextoid[&v]; + let idv = self.get_vertex_id(&v)?; let mut result = 0; for edge in self.graph[idv].iter() { result += max(0, self.graph[edge.dest][edge.rev].flow); @@ -122,12 +124,9 @@ impl Graph<FlowEdge> { Ok(result) } - ///This function returns the value of the flow outgoing from v. + /// This function returns the value of the flow outgoing from v. pub fn get_outflow(&self, v: Vertex) -> Result<i32, String> { - if !self.vertextoid.contains_key(&v) { - return Err("The graph does not contain the provided vertex.".to_string()); - } - let idv = self.vertextoid[&v]; + let idv = self.get_vertex_id(&v)?; let mut result = 0; for edge in self.graph[idv].iter() { result += max(0, edge.flow); @@ -135,19 +134,19 @@ impl Graph<FlowEdge> { Ok(result) } - ///This function computes the flow total value by computing the outgoing flow - ///from the source. + /// This function computes the flow total value by computing the outgoing flow + /// from the source. pub fn get_flow_value(&mut self) -> Result<i32, String> { self.get_outflow(Vertex::Source) } - ///This function shuffles the order of the edge lists. It keeps the ids of the - ///reversed edges consistent. + /// This function shuffles the order of the edge lists. It keeps the ids of the + /// reversed edges consistent. fn shuffle_edges(&mut self) { let mut rng = rand::thread_rng(); for i in 0..self.graph.len() { self.graph[i].shuffle(&mut rng); - //We need to update the ids of the reverse edges. + // We need to update the ids of the reverse edges. for j in 0..self.graph[i].len() { let target_v = self.graph[i][j].dest; let target_rev = self.graph[i][j].rev; @@ -156,97 +155,86 @@ impl Graph<FlowEdge> { } } - ///Computes an upper bound of the flow on the graph - pub fn flow_upper_bound(&self) -> u32 { - let idsource = self.vertextoid[&Vertex::Source]; + /// Computes an upper bound of the flow on the graph + pub fn flow_upper_bound(&self) -> Result<u32, String> { + let idsource = self.get_vertex_id(&Vertex::Source)?; let mut flow_upper_bound = 0; for edge in self.graph[idsource].iter() { flow_upper_bound += edge.cap; } - flow_upper_bound + Ok(flow_upper_bound) } - ///This function computes the maximal flow using Dinic's algorithm. It starts with - ///the flow values already present in the graph. So it is possible to add some edge to - ///the graph, compute a flow, add other edges, update the flow. + /// This function computes the maximal flow using Dinic's algorithm. It starts with + /// the flow values already present in the graph. So it is possible to add some edge to + /// the graph, compute a flow, add other edges, update the flow. pub fn compute_maximal_flow(&mut self) -> Result<(), String> { - if !self.vertextoid.contains_key(&Vertex::Source) { - return Err("The graph does not contain a source.".to_string()); - } - if !self.vertextoid.contains_key(&Vertex::Sink) { - return Err("The graph does not contain a sink.".to_string()); - } - - let idsource = self.vertextoid[&Vertex::Source]; - let idsink = self.vertextoid[&Vertex::Sink]; + let idsource = self.get_vertex_id(&Vertex::Source)?; + let idsink = self.get_vertex_id(&Vertex::Sink)?; let nb_vertices = self.graph.len(); - let flow_upper_bound = self.flow_upper_bound(); + let flow_upper_bound = self.flow_upper_bound()?; - //To ensure the dispersion of the associations generated by the - //assignation, we shuffle the neighbours of the nodes. Hence, - //the vertices do not consider their neighbours in the same order. + // To ensure the dispersion of the associations generated by the + // assignation, we shuffle the neighbours of the nodes. Hence, + // the vertices do not consider their neighbours in the same order. self.shuffle_edges(); - //We run Dinic's max flow algorithm + // We run Dinic's max flow algorithm loop { - //We build the level array from Dinic's algorithm. + // We build the level array from Dinic's algorithm. let mut level = vec![None; nb_vertices]; let mut fifo = VecDeque::new(); fifo.push_back((idsource, 0)); - while !fifo.is_empty() { - if let Some((id, lvl)) = fifo.pop_front() { - if level[id] == None { - //it means id has not yet been reached - level[id] = Some(lvl); - for edge in self.graph[id].iter() { - if edge.cap as i32 - edge.flow > 0 { - fifo.push_back((edge.dest, lvl + 1)); - } + while let Some((id, lvl)) = fifo.pop_front() { + if level[id] == None { + // it means id has not yet been reached + level[id] = Some(lvl); + for edge in self.graph[id].iter() { + if edge.cap as i32 - edge.flow > 0 { + fifo.push_back((edge.dest, lvl + 1)); } } } } if level[idsink] == None { - //There is no residual flow + // There is no residual flow break; } - //Now we run DFS respecting the level array + // Now we run DFS respecting the level array let mut next_nbd = vec![0; nb_vertices]; - let mut lifo = VecDeque::new(); + let mut lifo = Vec::new(); - lifo.push_back((idsource, flow_upper_bound)); + lifo.push((idsource, flow_upper_bound)); - while let Some((id_tmp, f_tmp)) = lifo.back() { - let id = *id_tmp; - let f = *f_tmp; + while let Some((id, f)) = lifo.last().cloned() { if id == idsink { - //The DFS reached the sink, we can add a - //residual flow. - lifo.pop_back(); - while let Some((id, _)) = lifo.pop_back() { + // The DFS reached the sink, we can add a + // residual flow. + lifo.pop(); + while let Some((id, _)) = lifo.pop() { let nbd = next_nbd[id]; self.graph[id][nbd].flow += f as i32; let id_rev = self.graph[id][nbd].dest; let nbd_rev = self.graph[id][nbd].rev; self.graph[id_rev][nbd_rev].flow -= f as i32; } - lifo.push_back((idsource, flow_upper_bound)); + lifo.push((idsource, flow_upper_bound)); continue; } - //else we did not reach the sink + // else we did not reach the sink let nbd = next_nbd[id]; if nbd >= self.graph[id].len() { - //There is nothing to explore from id anymore - lifo.pop_back(); - if let Some((parent, _)) = lifo.back() { + // There is nothing to explore from id anymore + lifo.pop(); + if let Some((parent, _)) = lifo.last() { next_nbd[*parent] += 1; } continue; } - //else we can try to send flow from id to its nbd + // else we can try to send flow from id to its nbd let new_flow = min( f as i32, self.graph[id][nbd].cap as i32 - self.graph[id][nbd].flow, @@ -257,19 +245,19 @@ impl Graph<FlowEdge> { } if let (Some(lvldest), Some(lvlid)) = (level[self.graph[id][nbd].dest], level[id]) { if lvldest <= lvlid { - //We cannot send flow to nbd. + // We cannot send flow to nbd. next_nbd[id] += 1; continue; } } - //otherwise, we send flow to nbd. - lifo.push_back((self.graph[id][nbd].dest, new_flow)); + // otherwise, we send flow to nbd. + lifo.push((self.graph[id][nbd].dest, new_flow)); } } Ok(()) } - ///This function takes a flow, and a cost function on the edges, and tries to find an + /// This function takes a flow, and a cost function on the edges, and tries to find an /// equivalent flow with a better cost, by finding improving overflow cycles. It uses /// as subroutine the Bellman Ford algorithm run up to path_length. /// We assume that the cost of edge (u,v) is the opposite of the cost of (v,u), and @@ -279,19 +267,19 @@ impl Graph<FlowEdge> { cost: &CostFunction, path_length: usize, ) -> Result<(), String> { - //We build the weighted graph g where we will look for negative cycle + // We build the weighted graph g where we will look for negative cycle let mut gf = self.build_cost_graph(cost)?; let mut cycles = gf.list_negative_cycles(path_length); while !cycles.is_empty() { - //we enumerate negative cycles + // we enumerate negative cycles for c in cycles.iter() { for i in 0..c.len() { - //We add one flow unit to the edge (u,v) of cycle c - let idu = self.vertextoid[&c[i]]; - let idv = self.vertextoid[&c[(i + 1) % c.len()]]; + // We add one flow unit to the edge (u,v) of cycle c + let idu = self.vertex_to_id[&c[i]]; + let idv = self.vertex_to_id[&c[(i + 1) % c.len()]]; for j in 0..self.graph[idu].len() { - //since idu appears at most once in the cycles, we enumerate every - //edge at most once. + // since idu appears at most once in the cycles, we enumerate every + // edge at most once. let edge = self.graph[idu][j]; if edge.dest == idv { self.graph[idu][j].flow += 1; @@ -308,16 +296,16 @@ impl Graph<FlowEdge> { Ok(()) } - ///Construct the weighted graph G_f from the flow and the cost function + /// Construct the weighted graph G_f from the flow and the cost function fn build_cost_graph(&self, cost: &CostFunction) -> Result<Graph<WeightedEdge>, String> { - let mut g = Graph::<WeightedEdge>::new(&self.idtovertex); - let nb_vertices = self.idtovertex.len(); + let mut g = Graph::<WeightedEdge>::new(&self.id_to_vertex); + let nb_vertices = self.id_to_vertex.len(); for i in 0..nb_vertices { for edge in self.graph[i].iter() { if edge.cap as i32 - edge.flow > 0 { - //It is possible to send overflow through this edge - let u = self.idtovertex[i]; - let v = self.idtovertex[edge.dest]; + // It is possible to send overflow through this edge + let u = self.id_to_vertex[i]; + let v = self.id_to_vertex[edge.dest]; if cost.contains_key(&(u, v)) { g.add_edge(u, v, cost[&(u, v)])?; } else if cost.contains_key(&(v, u)) { @@ -333,29 +321,26 @@ impl Graph<FlowEdge> { } impl Graph<WeightedEdge> { - ///This function adds a single directed weighted edge to the graph. + /// This function adds a single directed weighted edge to the graph. pub fn add_edge(&mut self, u: Vertex, v: Vertex, w: i32) -> Result<(), String> { - if !self.vertextoid.contains_key(&u) || !self.vertextoid.contains_key(&v) { - return Err("The graph does not contain the provided vertex.".to_string()); - } - let idu = self.vertextoid[&u]; - let idv = self.vertextoid[&v]; + let idu = self.get_vertex_id(&u)?; + let idv = self.get_vertex_id(&v)?; self.graph[idu].push(WeightedEdge { w, dest: idv }); Ok(()) } - ///This function lists the negative cycles it manages to find after path_length - ///iterations of the main loop of the Bellman-Ford algorithm. For the classical - ///algorithm, path_length needs to be equal to the number of vertices. However, - ///for particular graph structures like in our case, the algorithm is still correct - ///when path_length is the length of the longest possible simple path. - ///See the formal description of the algorithm for more details. + /// This function lists the negative cycles it manages to find after path_length + /// iterations of the main loop of the Bellman-Ford algorithm. For the classical + /// algorithm, path_length needs to be equal to the number of vertices. However, + /// for particular graph structures like in our case, the algorithm is still correct + /// when path_length is the length of the longest possible simple path. + /// See the formal description of the algorithm for more details. fn list_negative_cycles(&self, path_length: usize) -> Vec<Vec<Vertex>> { let nb_vertices = self.graph.len(); - //We start with every vertex at distance 0 of some imaginary extra -1 vertex. + // We start with every vertex at distance 0 of some imaginary extra -1 vertex. let mut distance = vec![0; nb_vertices]; - //The prev vector collects for every vertex from where does the shortest path come + // The prev vector collects for every vertex from where does the shortest path come let mut prev = vec![None; nb_vertices]; for _ in 0..path_length + 1 { @@ -369,29 +354,35 @@ impl Graph<WeightedEdge> { } } - //If self.graph contains a negative cycle, then at this point the graph described - //by prev (which is a directed 1-forest/functional graph) - //must contain a cycle. We list the cycles of prev. + // If self.graph contains a negative cycle, then at this point the graph described + // by prev (which is a directed 1-forest/functional graph) + // must contain a cycle. We list the cycles of prev. let cycles_prev = cycles_of_1_forest(&prev); - //Remark that the cycle in prev is in the reverse order compared to the cycle - //in the graph. Thus the .rev(). + // Remark that the cycle in prev is in the reverse order compared to the cycle + // in the graph. Thus the .rev(). return cycles_prev .iter() - .map(|cycle| cycle.iter().rev().map(|id| self.idtovertex[*id]).collect()) + .map(|cycle| { + cycle + .iter() + .rev() + .map(|id| self.id_to_vertex[*id]) + .collect() + }) .collect(); } } -///This function returns the list of cycles of a directed 1 forest. It does not -///check for the consistency of the input. +/// This function returns the list of cycles of a directed 1 forest. It does not +/// check for the consistency of the input. fn cycles_of_1_forest(forest: &[Option<usize>]) -> Vec<Vec<usize>> { let mut cycles = Vec::<Vec<usize>>::new(); let mut time_of_discovery = vec![None; forest.len()]; for t in 0..forest.len() { let mut id = t; - //while we are on a valid undiscovered node + // while we are on a valid undiscovered node while time_of_discovery[id] == None { time_of_discovery[id] = Some(t); if let Some(i) = forest[id] { @@ -401,8 +392,8 @@ fn cycles_of_1_forest(forest: &[Option<usize>]) -> Vec<Vec<usize>> { } } if forest[id] != None && time_of_discovery[id] == Some(t) { - //We discovered an id that we explored at this iteration t. - //It means we are on a cycle + // We discovered an id that we explored at this iteration t. + // It means we are on a cycle let mut cy = vec![id; 1]; let mut id2 = id; while let Some(id_next) = forest[id2] { |