aboutsummaryrefslogtreecommitdiff
path: root/doc/Load_Balancing.md
diff options
context:
space:
mode:
authorQuentin Dufour <quentin@deuxfleurs.fr>2021-03-17 16:15:18 +0100
committerQuentin Dufour <quentin@deuxfleurs.fr>2021-03-17 16:15:18 +0100
commit002538f92c1d9f95f2d699337f7d891c6aa0c9a4 (patch)
tree054aac5ce5e637c7baf3d15238c8c0c1ed8e97f4 /doc/Load_Balancing.md
parentc50113acf3fd61dcb77bc01bd6e9f226f813bf76 (diff)
downloadgarage-002538f92c1d9f95f2d699337f7d891c6aa0c9a4.tar.gz
garage-002538f92c1d9f95f2d699337f7d891c6aa0c9a4.zip
Refactor file organization
Diffstat (limited to 'doc/Load_Balancing.md')
-rw-r--r--doc/Load_Balancing.md195
1 files changed, 0 insertions, 195 deletions
diff --git a/doc/Load_Balancing.md b/doc/Load_Balancing.md
deleted file mode 100644
index a348ebc4..00000000
--- a/doc/Load_Balancing.md
+++ /dev/null
@@ -1,195 +0,0 @@
-I have conducted a quick study of different methods to load-balance data over different Garage nodes using consistent hashing.
-
-### Requirements
-
-- *good balancing*: two nodes that have the same announced capacity should receive close to the same number of items
-
-- *multi-datacenter*: the replicas of a partition should be distributed over as many datacenters as possible
-
-- *minimal disruption*: when adding or removing a node, as few partitions as possible should have to move around
-
-- *order-agnostic*: the same set of nodes (each associated with a datacenter name
- and a capacity) should always return the same distribution of partition
- replicas, independently of the order in which nodes were added/removed (this
- is to keep the implementation simple)
-
-### Methods
-
-#### Naive multi-DC ring walking strategy
-
-This strategy can be used with any ring-like algorithm to make it aware of the *multi-datacenter* requirement:
-
-In this method, the ring is a list of positions, each associated with a single node in the cluster.
-Partitions contain all the keys between two consecutive items of the ring.
-To find the nodes that store replicas of a given partition:
-
-- select the node for the position of the partition's lower bound
-- go clockwise on the ring, skipping nodes that:
- - we halve already selected
- - are in a datacenter of a node we have selected, except if we already have nodes from all possible datacenters
-
-In this way the selected nodes will always be distributed over
-`min(n_datacenters, n_replicas)` different datacenters, which is the best we
-can do.
-
-This method was implemented in the first version of Garage, with the basic
-ring construction from Dynamo DB that consists in associating `n_token` random positions to
-each node (I know it's not optimal, the Dynamo paper already studies this).
-
-#### Better rings
-
-The ring construction that selects `n_token` random positions for each nodes gives a ring of positions that
-is not well-balanced: the space between the tokens varies a lot, and some partitions are thus bigger than others.
-This problem was demonstrated in the original Dynamo DB paper.
-
-To solve this, we want to apply a better second method for partitionning our dataset:
-
-1. fix an initially large number of partitions (say 1024) with evenly-spaced delimiters,
-
-2. attribute each partition randomly to a node, with a probability
- proportionnal to its capacity (which `n_tokens` represented in the first
- method)
-
-For now we continue using the multi-DC ring walking described above.
-
-I have studied two ways to do the attribution of partitions to nodes, in a way that is deterministic:
-
-- Min-hash: for each partition, select node that minimizes `hash(node, partition_number)`
-- MagLev: see [here](https://blog.acolyer.org/2016/03/21/maglev-a-fast-and-reliable-software-network-load-balancer/)
-
-MagLev provided significantly better balancing, as it guarantees that the exact
-same number of partitions is attributed to all nodes that have the same
-capacity (and that this number is proportionnal to the node's capacity, except
-for large values), however in both cases:
-
-- the distribution is still bad, because we use the naive multi-DC ring walking
- that behaves strangely due to interactions between consecutive positions on
- the ring
-
-- the disruption in case of adding/removing a node is not as low as it can be,
- as we show with the following method.
-
-A quick description of MagLev (backend = node, lookup table = ring):
-
-> The basic idea of Maglev hashing is to assign a preference list of all the
-> lookup table positions to each backend. Then all the backends take turns
-> filling their most-preferred table positions that are still empty, until the
-> lookup table is completely filled in. Hence, Maglev hashing gives an almost
-> equal share of the lookup table to each of the backends. Heterogeneous
-> backend weights can be achieved by altering the relative frequency of the
-> backends’ turns…
-
-Here are some stats (run `scripts/simulate_ring.py` to reproduce):
-
-```
-##### Custom-ring (min-hash) #####
-
-#partitions per node (capacity in parenthesis):
-- datura (8) : 227
-- digitale (8) : 351
-- drosera (8) : 259
-- geant (16) : 476
-- gipsie (16) : 410
-- io (16) : 495
-- isou (8) : 231
-- mini (4) : 149
-- mixi (4) : 188
-- modi (4) : 127
-- moxi (4) : 159
-
-Variance of load distribution for load normalized to intra-class mean
-(a class being the set of nodes with the same announced capacity): 2.18% <-- REALLY BAD
-
-Disruption when removing nodes (partitions moved on 0/1/2/3 nodes):
-removing atuin digitale : 63.09% 30.18% 6.64% 0.10%
-removing atuin drosera : 72.36% 23.44% 4.10% 0.10%
-removing atuin datura : 73.24% 21.48% 5.18% 0.10%
-removing jupiter io : 48.34% 38.48% 12.30% 0.88%
-removing jupiter isou : 74.12% 19.73% 6.05% 0.10%
-removing grog mini : 84.47% 12.40% 2.93% 0.20%
-removing grog mixi : 80.76% 16.60% 2.64% 0.00%
-removing grog moxi : 83.59% 14.06% 2.34% 0.00%
-removing grog modi : 87.01% 11.43% 1.46% 0.10%
-removing grisou geant : 48.24% 37.40% 13.67% 0.68%
-removing grisou gipsie : 53.03% 33.59% 13.09% 0.29%
-on average: 69.84% 23.53% 6.40% 0.23% <-- COULD BE BETTER
-
---------
-
-##### MagLev #####
-
-#partitions per node:
-- datura (8) : 273
-- digitale (8) : 256
-- drosera (8) : 267
-- geant (16) : 452
-- gipsie (16) : 427
-- io (16) : 483
-- isou (8) : 272
-- mini (4) : 184
-- mixi (4) : 160
-- modi (4) : 144
-- moxi (4) : 154
-
-Variance of load distribution: 0.37% <-- Already much better, but not optimal
-
-Disruption when removing nodes (partitions moved on 0/1/2/3 nodes):
-removing atuin digitale : 62.60% 29.20% 7.91% 0.29%
-removing atuin drosera : 65.92% 26.56% 7.23% 0.29%
-removing atuin datura : 63.96% 27.83% 7.71% 0.49%
-removing jupiter io : 44.63% 40.33% 14.06% 0.98%
-removing jupiter isou : 63.38% 27.25% 8.98% 0.39%
-removing grog mini : 72.46% 21.00% 6.35% 0.20%
-removing grog mixi : 72.95% 22.46% 4.39% 0.20%
-removing grog moxi : 74.22% 20.61% 4.98% 0.20%
-removing grog modi : 75.98% 18.36% 5.27% 0.39%
-removing grisou geant : 46.97% 36.62% 15.04% 1.37%
-removing grisou gipsie : 49.22% 36.52% 12.79% 1.46%
-on average: 62.94% 27.89% 8.61% 0.57% <-- WORSE THAN PREVIOUSLY
-```
-
-#### The magical solution: multi-DC aware MagLev
-
-Suppose we want to select three replicas for each partition (this is what we do in our simulation and in most Garage deployments).
-We apply MagLev three times consecutively, one for each replica selection.
-The first time is pretty much the same as normal MagLev, but for the following times, when a node runs through its preference
-list to select a partition to replicate, we skip partitions for which adding this node would not bring datacenter-diversity.
-More precisely, we skip a partition in the preference list if:
-
-- the node already replicates the partition (from one of the previous rounds of MagLev)
-- the node is in a datacenter where a node already replicates the partition and there are other datacenters available
-
-Refer to `method4` in the simulation script for a formal definition.
-
-```
-##### Multi-DC aware MagLev #####
-
-#partitions per node:
-- datura (8) : 268 <-- NODES WITH THE SAME CAPACITY
-- digitale (8) : 267 HAVE THE SAME NUM OF PARTITIONS
-- drosera (8) : 267 (+- 1)
-- geant (16) : 470
-- gipsie (16) : 472
-- io (16) : 516
-- isou (8) : 268
-- mini (4) : 136
-- mixi (4) : 136
-- modi (4) : 136
-- moxi (4) : 136
-
-Variance of load distribution: 0.06% <-- CAN'T DO BETTER THAN THIS
-
-Disruption when removing nodes (partitions moved on 0/1/2/3 nodes):
-removing atuin digitale : 65.72% 33.01% 1.27% 0.00%
-removing atuin drosera : 64.65% 33.89% 1.37% 0.10%
-removing atuin datura : 66.11% 32.62% 1.27% 0.00%
-removing jupiter io : 42.97% 53.42% 3.61% 0.00%
-removing jupiter isou : 66.11% 32.32% 1.56% 0.00%
-removing grog mini : 80.47% 18.85% 0.68% 0.00%
-removing grog mixi : 80.27% 18.85% 0.88% 0.00%
-removing grog moxi : 80.18% 19.04% 0.78% 0.00%
-removing grog modi : 79.69% 19.92% 0.39% 0.00%
-removing grisou geant : 44.63% 52.15% 3.22% 0.00%
-removing grisou gipsie : 43.55% 52.54% 3.91% 0.00%
-on average: 64.94% 33.33% 1.72% 0.01% <-- VERY GOOD (VERY LOW VALUES FOR 2 AND 3 NODES)
-```