use std::collections::{BTreeMap, HashMap};
use std::sync::Arc;
use std::time::Duration;
use async_trait::async_trait;
use futures::stream::*;
use serde::{Deserialize, Serialize};
use serde_bytes::ByteBuf;
use garage_util::data::*;
use garage_util::error::Error;
use garage_rpc::system::System;
use garage_rpc::*;
use crate::crdt::Crdt;
use crate::data::*;
use crate::gc::*;
use crate::merkle::*;
use crate::replication::*;
use crate::schema::*;
use crate::sync::*;
const TABLE_RPC_TIMEOUT: Duration = Duration::from_secs(10);
pub struct Table<F: TableSchema + 'static, R: TableReplication + 'static> {
pub system: Arc<System>,
pub data: Arc<TableData<F, R>>,
pub merkle_updater: Arc<MerkleUpdater<F, R>>,
pub syncer: Arc<TableSyncer<F, R>>,
endpoint: Arc<Endpoint<TableRpc<F>, Self>>,
}
#[derive(Serialize, Deserialize)]
pub(crate) enum TableRpc<F: TableSchema> {
Ok,
Error(String),
ReadEntry(F::P, F::S),
ReadEntryResponse(Option<ByteBuf>),
// Read range: read all keys in partition P, possibly starting at a certain sort key offset
ReadRange(F::P, Option<F::S>, Option<F::Filter>, usize),
Update(Vec<Arc<ByteBuf>>),
}
impl<F: TableSchema> Message for TableRpc<F> {
type Response = TableRpc<F>;
}
impl<F, R> Table<F, R>
where
F: TableSchema + 'static,
R: TableReplication + 'static,
{
// =============== PUBLIC INTERFACE FUNCTIONS (new, insert, get, etc) ===============
pub fn new(
instance: F,
replication: R,
system: Arc<System>,
db: &sled::Db,
name: String,
) -> Arc<Self> {
let endpoint = system
.netapp
.endpoint(format!("garage_table/table.rs/Rpc:{}", name));
let data = TableData::new(system.clone(), name, instance, replication, db);
let merkle_updater = MerkleUpdater::launch(&system.background, data.clone());
let syncer = TableSyncer::launch(system.clone(), data.clone(), merkle_updater.clone());
TableGc::launch(system.clone(), data.clone());
let table = Arc::new(Self {
system,
data,
merkle_updater,
syncer,
endpoint,
});
table.endpoint.set_handler(table.clone());
table
}
pub async fn insert(&self, e: &F::E) -> Result<(), Error> {
let hash = e.partition_key().hash();
let who = self.data.replication.write_nodes(&hash);
//eprintln!("insert who: {:?}", who);
let e_enc = Arc::new(ByteBuf::from(rmp_to_vec_all_named(e)?));
let rpc = TableRpc::<F>::Update(vec![e_enc]);
self.system
.rpc
.try_call_many(
&self.endpoint,
&who[..],
rpc,
RequestStrategy::with_priority(PRIO_NORMAL)
.with_quorum(self.data.replication.write_quorum())
.with_timeout(TABLE_RPC_TIMEOUT),
)
.await?;
Ok(())
}
pub async fn insert_many(&self, entries: &[F::E]) -> Result<(), Error> {
let mut call_list: HashMap<_, Vec<_>> = HashMap::new();
for entry in entries.iter() {
let hash = entry.partition_key().hash();
let who = self.data.replication.write_nodes(&hash);
let e_enc = Arc::new(ByteBuf::from(rmp_to_vec_all_named(entry)?));
for node in who {
call_list.entry(node).or_default().push(e_enc.clone());
}
}
let call_futures = call_list.drain().map(|(node, entries)| async move {
let rpc = TableRpc::<F>::Update(entries);
let resp = self
.system
.rpc
.call(
&self.endpoint,
node,
rpc,
RequestStrategy::with_priority(PRIO_NORMAL).with_timeout(TABLE_RPC_TIMEOUT),
)
.await?;
Ok::<_, Error>((node, resp))
});
let mut resps = call_futures.collect::<FuturesUnordered<_>>();
let mut errors = vec![];
while let Some(resp) = resps.next().await {
if let Err(e) = resp {
errors.push(e);
}
}
if errors.len() > self.data.replication.max_write_errors() {
Err(Error::Message("Too many errors".into()))
} else {
Ok(())
}
}
pub async fn get(
self: &Arc<Self>,
partition_key: &F::P,
sort_key: &F::S,
) -> Result<Option<F::E>, Error> {
let hash = partition_key.hash();
let who = self.data.replication.read_nodes(&hash);
//eprintln!("get who: {:?}", who);
let rpc = TableRpc::<F>::ReadEntry(partition_key.clone(), sort_key.clone());
let resps = self
.system
.rpc
.try_call_many(
&self.endpoint,
&who[..],
rpc,
RequestStrategy::with_priority(PRIO_NORMAL)
.with_quorum(self.data.replication.read_quorum())
.with_timeout(TABLE_RPC_TIMEOUT)
.interrupt_after_quorum(true),
)
.await?;
let mut ret = None;
let mut not_all_same = false;
for resp in resps {
if let TableRpc::ReadEntryResponse(value) = resp {
if let Some(v_bytes) = value {
let v = self.data.decode_entry(v_bytes.as_slice())?;
ret = match ret {
None => Some(v),
Some(mut x) => {
if x != v {
not_all_same = true;
x.merge(&v);
}
Some(x)
}
}
}
} else {
return Err(Error::Message("Invalid return value to read".to_string()));
}
}
if let Some(ret_entry) = &ret {
if not_all_same {
let self2 = self.clone();
let ent2 = ret_entry.clone();
self.system
.background
.spawn_cancellable(async move { self2.repair_on_read(&who[..], ent2).await });
}
}
Ok(ret)
}
pub async fn get_range(
self: &Arc<Self>,
partition_key: &F::P,
begin_sort_key: Option<F::S>,
filter: Option<F::Filter>,
limit: usize,
) -> Result<Vec<F::E>, Error> {
let hash = partition_key.hash();
let who = self.data.replication.read_nodes(&hash);
let rpc = TableRpc::<F>::ReadRange(partition_key.clone(), begin_sort_key, filter, limit);
let resps = self
.system
.rpc
.try_call_many(
&self.endpoint,
&who[..],
rpc,
RequestStrategy::with_priority(PRIO_NORMAL)
.with_quorum(self.data.replication.read_quorum())
.with_timeout(TABLE_RPC_TIMEOUT)
.interrupt_after_quorum(true),
)
.await?;
let mut ret = BTreeMap::new();
let mut to_repair = BTreeMap::new();
for resp in resps {
if let TableRpc::Update(entries) = resp {
for entry_bytes in entries.iter() {
let entry = self.data.decode_entry(entry_bytes.as_slice())?;
let entry_key = self.data.tree_key(entry.partition_key(), entry.sort_key());
match ret.remove(&entry_key) {
None => {
ret.insert(entry_key, Some(entry));
}
Some(Some(mut prev)) => {
let must_repair = prev != entry;
prev.merge(&entry);
if must_repair {
to_repair.insert(entry_key.clone(), Some(prev.clone()));
}
ret.insert(entry_key, Some(prev));
}
Some(None) => unreachable!(),
}
}
}
}
if !to_repair.is_empty() {
let self2 = self.clone();
self.system.background.spawn_cancellable(async move {
for (_, v) in to_repair.iter_mut() {
self2.repair_on_read(&who[..], v.take().unwrap()).await?;
}
Ok(())
});
}
let ret_vec = ret
.iter_mut()
.take(limit)
.map(|(_k, v)| v.take().unwrap())
.collect::<Vec<_>>();
Ok(ret_vec)
}
// =============== UTILITY FUNCTION FOR CLIENT OPERATIONS ===============
async fn repair_on_read(&self, who: &[NodeID], what: F::E) -> Result<(), Error> {
let what_enc = Arc::new(ByteBuf::from(rmp_to_vec_all_named(&what)?));
self.system
.rpc
.try_call_many(
&self.endpoint,
who,
TableRpc::<F>::Update(vec![what_enc]),
RequestStrategy::with_priority(PRIO_NORMAL)
.with_quorum(who.len())
.with_timeout(TABLE_RPC_TIMEOUT),
)
.await?;
Ok(())
}
// ====== RPC HANDLER =====
//
async fn handle_rpc(self: &Arc<Self>, msg: &TableRpc<F>) -> Result<TableRpc<F>, Error> {
match msg {
TableRpc::ReadEntry(key, sort_key) => {
let value = self.data.read_entry(key, sort_key)?;
Ok(TableRpc::ReadEntryResponse(value))
}
TableRpc::ReadRange(key, begin_sort_key, filter, limit) => {
let values = self.data.read_range(key, begin_sort_key, filter, *limit)?;
Ok(TableRpc::Update(values))
}
TableRpc::Update(pairs) => {
self.data.update_many(pairs)?;
Ok(TableRpc::Ok)
}
_ => Err(Error::BadRpc("Unexpected table RPC".to_string())),
}
}
}
#[async_trait]
impl<F, R> EndpointHandler<TableRpc<F>> for Table<F, R>
where
F: TableSchema + 'static,
R: TableReplication + 'static,
{
async fn handle(self: &Arc<Self>, msg: &TableRpc<F>, _from: NodeID) -> TableRpc<F> {
self.handle_rpc(msg)
.await
.unwrap_or_else(|e| TableRpc::<F>::Error(format!("{}", e)))
}
}