use core::borrow::Borrow;
use std::convert::TryInto;
use std::sync::Arc;
use serde_bytes::ByteBuf;
use tokio::sync::Notify;
use garage_db as db;
use garage_db::counted_tree_hack::CountedTree;
use garage_util::data::*;
use garage_util::error::*;
use garage_rpc::system::System;
use crate::crdt::Crdt;
use crate::gc::GcTodoEntry;
use crate::metrics::*;
use crate::replication::*;
use crate::schema::*;
use crate::util::*;
pub struct TableData<F: TableSchema, R: TableReplication> {
system: Arc<System>,
pub instance: F,
pub replication: R,
pub store: db::Tree,
pub(crate) merkle_tree: db::Tree,
pub(crate) merkle_todo: db::Tree,
pub(crate) merkle_todo_notify: Notify,
pub(crate) insert_queue: db::Tree,
pub(crate) insert_queue_notify: Notify,
pub(crate) gc_todo: CountedTree,
pub(crate) metrics: TableMetrics,
}
impl<F, R> TableData<F, R>
where
F: TableSchema,
R: TableReplication,
{
pub fn new(system: Arc<System>, instance: F, replication: R, db: &db::Db) -> Arc<Self> {
let store = db
.open_tree(&format!("{}:table", F::TABLE_NAME))
.expect("Unable to open DB tree");
let merkle_tree = db
.open_tree(&format!("{}:merkle_tree", F::TABLE_NAME))
.expect("Unable to open DB Merkle tree tree");
let merkle_todo = db
.open_tree(&format!("{}:merkle_todo", F::TABLE_NAME))
.expect("Unable to open DB Merkle TODO tree");
let insert_queue = db
.open_tree(&format!("{}:insert_queue", F::TABLE_NAME))
.expect("Unable to open insert queue DB tree");
let gc_todo = db
.open_tree(&format!("{}:gc_todo_v2", F::TABLE_NAME))
.expect("Unable to open GC DB tree");
let gc_todo = CountedTree::new(gc_todo).expect("Cannot count gc_todo_v2");
let metrics = TableMetrics::new(
F::TABLE_NAME,
store.clone(),
merkle_tree.clone(),
merkle_todo.clone(),
gc_todo.clone(),
);
Arc::new(Self {
system,
instance,
replication,
store,
merkle_tree,
merkle_todo,
merkle_todo_notify: Notify::new(),
insert_queue,
insert_queue_notify: Notify::new(),
gc_todo,
metrics,
})
}
// Read functions
pub fn read_entry(&self, p: &F::P, s: &F::S) -> Result<Option<ByteBuf>, Error> {
let tree_key = self.tree_key(p, s);
if let Some(bytes) = self.store.get(&tree_key)? {
Ok(Some(ByteBuf::from(bytes.to_vec())))
} else {
Ok(None)
}
}
pub fn read_range(
&self,
partition_key: &F::P,
start: &Option<F::S>,
filter: &Option<F::Filter>,
limit: usize,
enumeration_order: EnumerationOrder,
) -> Result<Vec<Arc<ByteBuf>>, Error> {
let partition_hash = partition_key.hash();
match enumeration_order {
EnumerationOrder::Forward => {
let first_key = match start {
None => partition_hash.to_vec(),
Some(sk) => self.tree_key(partition_key, sk),
};
let range = self.store.range(first_key..)?;
self.read_range_aux(partition_hash, range, filter, limit)
}
EnumerationOrder::Reverse => match start {
Some(sk) => {
let last_key = self.tree_key(partition_key, sk);
let range = self.store.range_rev(..=last_key)?;
self.read_range_aux(partition_hash, range, filter, limit)
}
None => {
let mut last_key = partition_hash.to_vec();
let lower = u128::from_be_bytes(last_key[16..32].try_into().unwrap());
last_key[16..32].copy_from_slice(&u128::to_be_bytes(lower + 1));
let range = self.store.range_rev(..last_key)?;
self.read_range_aux(partition_hash, range, filter, limit)
}
},
}
}
fn read_range_aux<'a>(
&self,
partition_hash: Hash,
range: db::ValueIter<'a>,
filter: &Option<F::Filter>,
limit: usize,
) -> Result<Vec<Arc<ByteBuf>>, Error> {
let mut ret = vec![];
for item in range {
let (key, value) = item?;
if &key[..32] != partition_hash.as_slice() {
break;
}
let keep = match filter {
None => true,
Some(f) => {
let entry = self.decode_entry(value.as_ref())?;
F::matches_filter(&entry, f)
}
};
if keep {
ret.push(Arc::new(ByteBuf::from(value)));
}
if ret.len() >= limit {
break;
}
}
Ok(ret)
}
// Mutation functions
// When changing this code, take care of propagating modifications correctly:
// - When an entry is modified or deleted, call the updated() function
// on the table instance
// - When an entry is modified or deleted, add it to the merkle updater's todo list.
// This has to be done atomically with the modification for the merkle updater
// to maintain consistency. The merkle updater must then be notified with todo_notify.
// - When an entry is updated to be a tombstone, add it to the gc_todo tree
pub(crate) fn update_many<T: Borrow<ByteBuf>>(&self, entries: &[T]) -> Result<(), Error> {
for update_bytes in entries.iter() {
self.update_entry(update_bytes.borrow().as_slice())?;
}
Ok(())
}
pub(crate) fn update_entry(&self, update_bytes: &[u8]) -> Result<(), Error> {
let update = self.decode_entry(update_bytes)?;
self.update_entry_with(update.partition_key(), update.sort_key(), |ent| match ent {
Some(mut ent) => {
ent.merge(&update);
ent
}
None => update.clone(),
})?;
Ok(())
}
pub fn update_entry_with(
&self,
partition_key: &F::P,
sort_key: &F::S,
f: impl Fn(Option<F::E>) -> F::E,
) -> Result<Option<F::E>, Error> {
let tree_key = self.tree_key(partition_key, sort_key);
let changed = self.store.db().transaction(|mut tx| {
let (old_entry, old_bytes, new_entry) = match tx.get(&self.store, &tree_key)? {
Some(old_bytes) => {
let old_entry = self.decode_entry(&old_bytes).map_err(db::TxError::Abort)?;
let new_entry = f(Some(old_entry.clone()));
(Some(old_entry), Some(old_bytes), new_entry)
}
None => (None, None, f(None)),
};
// Changed can be true in two scenarios
// Scenario 1: the actual represented value changed,
// so of course the messagepack encoding changed as well
// Scenario 2: the value didn't change but due to a migration in the
// data format, the messagepack encoding changed. In this case,
// we also have to write the migrated value in the table and update
// the associated Merkle tree entry.
let new_bytes = rmp_to_vec_all_named(&new_entry)
.map_err(Error::RmpEncode)
.map_err(db::TxError::Abort)?;
let changed = Some(&new_bytes[..]) != old_bytes.as_deref();
drop(old_bytes);
if changed {
let new_bytes_hash = blake2sum(&new_bytes);
tx.insert(&self.merkle_todo, &tree_key, new_bytes_hash.as_slice())?;
tx.insert(&self.store, &tree_key, new_bytes)?;
self.instance
.updated(&mut tx, old_entry.as_ref(), Some(&new_entry))?;
Ok(Some((new_entry, new_bytes_hash)))
} else {
Ok(None)
}
})?;
if let Some((new_entry, new_bytes_hash)) = changed {
self.metrics.internal_update_counter.add(1);
let is_tombstone = new_entry.is_tombstone();
self.merkle_todo_notify.notify_one();
if is_tombstone {
// We are only responsible for GC'ing this item if we are the
// "leader" of the partition, i.e. the first node in the
// set of nodes that replicates this partition.
// This avoids GC loops and does not change the termination properties
// of the GC algorithm, as in all cases GC is suspended if
// any node of the partition is unavailable.
let pk_hash = Hash::try_from(&tree_key[..32]).unwrap();
let nodes = self.replication.write_nodes(&pk_hash);
if nodes.first() == Some(&self.system.id) {
GcTodoEntry::new(tree_key, new_bytes_hash).save(&self.gc_todo)?;
}
}
Ok(Some(new_entry))
} else {
Ok(None)
}
}
pub(crate) fn delete_if_equal(self: &Arc<Self>, k: &[u8], v: &[u8]) -> Result<bool, Error> {
let removed = self
.store
.db()
.transaction(|mut tx| match tx.get(&self.store, k)? {
Some(cur_v) if cur_v == v => {
let old_entry = self.decode_entry(v).map_err(db::TxError::Abort)?;
tx.remove(&self.store, k)?;
tx.insert(&self.merkle_todo, k, vec![])?;
self.instance.updated(&mut tx, Some(&old_entry), None)?;
Ok(true)
}
_ => Ok(false),
})?;
if removed {
self.metrics.internal_delete_counter.add(1);
self.merkle_todo_notify.notify_one();
}
Ok(removed)
}
pub(crate) fn delete_if_equal_hash(
self: &Arc<Self>,
k: &[u8],
vhash: Hash,
) -> Result<bool, Error> {
let removed = self
.store
.db()
.transaction(|mut tx| match tx.get(&self.store, k)? {
Some(cur_v) if blake2sum(&cur_v[..]) == vhash => {
let old_entry = self.decode_entry(&cur_v[..]).map_err(db::TxError::Abort)?;
tx.remove(&self.store, k)?;
tx.insert(&self.merkle_todo, k, vec![])?;
self.instance.updated(&mut tx, Some(&old_entry), None)?;
Ok(true)
}
_ => Ok(false),
})?;
if removed {
self.metrics.internal_delete_counter.add(1);
self.merkle_todo_notify.notify_one();
}
Ok(removed)
}
// ---- Insert queue functions ----
pub(crate) fn queue_insert(
&self,
tx: &mut db::Transaction,
ins: &F::E,
) -> db::TxResult<(), Error> {
let tree_key = self.tree_key(ins.partition_key(), ins.sort_key());
let new_entry = match tx.get(&self.insert_queue, &tree_key)? {
Some(old_v) => {
let mut entry = self.decode_entry(&old_v).map_err(db::TxError::Abort)?;
entry.merge(ins);
rmp_to_vec_all_named(&entry)
.map_err(Error::RmpEncode)
.map_err(db::TxError::Abort)?
}
None => rmp_to_vec_all_named(ins)
.map_err(Error::RmpEncode)
.map_err(db::TxError::Abort)?,
};
tx.insert(&self.insert_queue, &tree_key, new_entry)?;
Ok(())
}
// ---- Utility functions ----
pub fn tree_key(&self, p: &F::P, s: &F::S) -> Vec<u8> {
let mut ret = p.hash().to_vec();
ret.extend(s.sort_key());
ret
}
pub fn decode_entry(&self, bytes: &[u8]) -> Result<F::E, Error> {
match rmp_serde::decode::from_read_ref::<_, F::E>(bytes) {
Ok(x) => Ok(x),
Err(e) => match F::try_migrate(bytes) {
Some(x) => Ok(x),
None => {
warn!("Unable to decode entry of {}: {}", F::TABLE_NAME, e);
for line in hexdump::hexdump_iter(bytes) {
debug!("{}", line);
}
Err(e.into())
}
},
}
}
pub fn gc_todo_len(&self) -> Result<usize, Error> {
Ok(self.gc_todo.len())
}
}