//! Contain structs related to making RPCs
use std::collections::HashMap;
use std::sync::{Arc, RwLock};
use std::time::Duration;
use futures::future::join_all;
use futures::stream::futures_unordered::FuturesUnordered;
use futures::stream::StreamExt;
use tokio::select;
use opentelemetry::KeyValue;
use opentelemetry::{
trace::{FutureExt as OtelFutureExt, Span, TraceContextExt, Tracer},
Context,
};
pub use netapp::endpoint::{Endpoint, EndpointHandler, StreamingEndpointHandler};
pub use netapp::message::{
IntoReq, Message as Rpc, OrderTag, Req, RequestPriority, Resp, PRIO_BACKGROUND, PRIO_HIGH,
PRIO_NORMAL, PRIO_SECONDARY,
};
use netapp::peering::fullmesh::FullMeshPeeringStrategy;
pub use netapp::{self, NetApp, NodeID};
use garage_util::data::*;
use garage_util::error::Error;
use garage_util::metrics::RecordDuration;
use crate::layout::LayoutHelper;
use crate::metrics::RpcMetrics;
// Default RPC timeout = 5 minutes
const DEFAULT_TIMEOUT: Duration = Duration::from_secs(300);
/// Strategy to apply when making RPC
#[derive(Copy, Clone)]
pub struct RequestStrategy {
/// Min number of response to consider the request successful
rs_quorum: Option<usize>,
/// Send all requests at once
rs_send_all_at_once: Option<bool>,
/// Request priority
rs_priority: RequestPriority,
/// Custom timeout for this request
rs_timeout: Timeout,
}
#[derive(Copy, Clone)]
enum Timeout {
None,
Default,
Custom(Duration),
}
impl RequestStrategy {
/// Create a RequestStrategy with default timeout and not interrupting when quorum reached
pub fn with_priority(prio: RequestPriority) -> Self {
RequestStrategy {
rs_quorum: None,
rs_send_all_at_once: None,
rs_priority: prio,
rs_timeout: Timeout::Default,
}
}
/// Set quorum to be reached for request
pub fn with_quorum(mut self, quorum: usize) -> Self {
self.rs_quorum = Some(quorum);
self
}
/// Set quorum to be reached for request
pub fn send_all_at_once(mut self, value: bool) -> Self {
self.rs_send_all_at_once = Some(value);
self
}
/// Deactivate timeout for this request
pub fn without_timeout(mut self) -> Self {
self.rs_timeout = Timeout::None;
self
}
/// Set custom timeout for this request
pub fn with_custom_timeout(mut self, timeout: Duration) -> Self {
self.rs_timeout = Timeout::Custom(timeout);
self
}
}
#[derive(Clone)]
pub struct RpcHelper(Arc<RpcHelperInner>);
struct RpcHelperInner {
our_node_id: Uuid,
fullmesh: Arc<FullMeshPeeringStrategy>,
layout: Arc<RwLock<LayoutHelper>>,
metrics: RpcMetrics,
rpc_timeout: Duration,
}
impl RpcHelper {
pub(crate) fn new(
our_node_id: Uuid,
fullmesh: Arc<FullMeshPeeringStrategy>,
layout: Arc<RwLock<LayoutHelper>>,
rpc_timeout: Option<Duration>,
) -> Self {
let metrics = RpcMetrics::new();
Self(Arc::new(RpcHelperInner {
our_node_id,
fullmesh,
layout,
metrics,
rpc_timeout: rpc_timeout.unwrap_or(DEFAULT_TIMEOUT),
}))
}
pub fn rpc_timeout(&self) -> Duration {
self.0.rpc_timeout
}
pub async fn call<M, N, H, S>(
&self,
endpoint: &Endpoint<M, H>,
to: Uuid,
msg: N,
strat: RequestStrategy,
) -> Result<S, Error>
where
M: Rpc<Response = Result<S, Error>>,
N: IntoReq<M> + Send,
H: StreamingEndpointHandler<M>,
{
let tracer = opentelemetry::global::tracer("garage");
let span_name = format!("RPC [{}] to {:?}", endpoint.path(), to);
let mut span = tracer.start(span_name);
span.set_attribute(KeyValue::new("from", format!("{:?}", self.0.our_node_id)));
span.set_attribute(KeyValue::new("to", format!("{:?}", to)));
let metric_tags = [
KeyValue::new("rpc_endpoint", endpoint.path().to_string()),
KeyValue::new("from", format!("{:?}", self.0.our_node_id)),
KeyValue::new("to", format!("{:?}", to)),
];
self.0.metrics.rpc_counter.add(1, &metric_tags);
let node_id = to.into();
let rpc_call = endpoint
.call_streaming(&node_id, msg, strat.rs_priority)
.with_context(Context::current_with_span(span))
.record_duration(&self.0.metrics.rpc_duration, &metric_tags);
let timeout = async {
match strat.rs_timeout {
Timeout::None => futures::future::pending().await,
Timeout::Default => tokio::time::sleep(self.0.rpc_timeout).await,
Timeout::Custom(t) => tokio::time::sleep(t).await,
}
};
select! {
res = rpc_call => {
if res.is_err() {
self.0.metrics.rpc_netapp_error_counter.add(1, &metric_tags);
}
let res = res?.into_msg();
if res.is_err() {
self.0.metrics.rpc_garage_error_counter.add(1, &metric_tags);
}
Ok(res?)
}
() = timeout => {
self.0.metrics.rpc_timeout_counter.add(1, &metric_tags);
Err(Error::Timeout)
}
}
}
pub async fn call_many<M, N, H, S>(
&self,
endpoint: &Endpoint<M, H>,
to: &[Uuid],
msg: N,
strat: RequestStrategy,
) -> Result<Vec<(Uuid, Result<S, Error>)>, Error>
where
M: Rpc<Response = Result<S, Error>>,
N: IntoReq<M>,
H: StreamingEndpointHandler<M>,
{
let tracer = opentelemetry::global::tracer("garage");
let span_name = format!("RPC [{}] call_many {} nodes", endpoint.path(), to.len());
let span = tracer.start(span_name);
let msg = msg.into_req().map_err(netapp::error::Error::from)?;
let resps = join_all(
to.iter()
.map(|to| self.call(endpoint, *to, msg.clone(), strat)),
)
.with_context(Context::current_with_span(span))
.await;
Ok(to
.iter()
.cloned()
.zip(resps.into_iter())
.collect::<Vec<_>>())
}
pub async fn broadcast<M, N, H, S>(
&self,
endpoint: &Endpoint<M, H>,
msg: N,
strat: RequestStrategy,
) -> Result<Vec<(Uuid, Result<S, Error>)>, Error>
where
M: Rpc<Response = Result<S, Error>>,
N: IntoReq<M>,
H: StreamingEndpointHandler<M>,
{
let to = self
.0
.fullmesh
.get_peer_list()
.iter()
.map(|p| p.id.into())
.collect::<Vec<_>>();
self.call_many(endpoint, &to[..], msg, strat).await
}
/// Make a RPC call to multiple servers, returning either a Vec of responses,
/// or an error if quorum could not be reached due to too many errors
///
/// If RequestStrategy has send_all_at_once set, then all requests will be
/// sent at once, and `try_call_many` will return as soon as a quorum of
/// responses is achieved, dropping and cancelling the remaining requests.
///
/// Otherwise, `quorum` requests will be sent at the same time, and if an
/// error response is received, a new request will be sent to replace it.
/// The ordering of nodes to which requests are sent is determined by
/// the `RpcHelper::request_order` function, which takes into account
/// parameters such as node zones and measured ping values.
///
/// In both cases, the basic contract of this function is that even in the
/// absence of failures, the RPC call might not be driven to completion
/// on all of the specified nodes. It is therefore unfit for broadcast
/// write operations where we expect all nodes to successfully store
/// the written date.
pub async fn try_call_many<M, N, H, S>(
&self,
endpoint: &Arc<Endpoint<M, H>>,
to: &[Uuid],
msg: N,
strategy: RequestStrategy,
) -> Result<Vec<S>, Error>
where
M: Rpc<Response = Result<S, Error>> + 'static,
N: IntoReq<M>,
H: StreamingEndpointHandler<M> + 'static,
S: Send + 'static,
{
let quorum = strategy.rs_quorum.unwrap_or(to.len());
let tracer = opentelemetry::global::tracer("garage");
let span_name = format!(
"RPC [{}] try_call_many (quorum {}/{})",
endpoint.path(),
quorum,
to.len()
);
let mut span = tracer.start(span_name);
span.set_attribute(KeyValue::new("from", format!("{:?}", self.0.our_node_id)));
span.set_attribute(KeyValue::new("to", format!("{:?}", to)));
span.set_attribute(KeyValue::new("quorum", quorum as i64));
self.try_call_many_inner(endpoint, to, msg, strategy, quorum)
.with_context(Context::current_with_span(span))
.await
}
async fn try_call_many_inner<M, N, H, S>(
&self,
endpoint: &Arc<Endpoint<M, H>>,
to: &[Uuid],
msg: N,
strategy: RequestStrategy,
quorum: usize,
) -> Result<Vec<S>, Error>
where
M: Rpc<Response = Result<S, Error>> + 'static,
N: IntoReq<M>,
H: StreamingEndpointHandler<M> + 'static,
S: Send + 'static,
{
// Once quorum is reached, other requests don't matter.
// What we do here is only send the required number of requests
// to reach a quorum, priorizing nodes with the lowest latency.
// When there are errors, we start new requests to compensate.
// TODO: this could be made more aggressive, e.g. if after 2x the
// average ping of a given request, the response is not yet received,
// preemptively send an additional request to any remaining nodes.
// Reorder requests to priorize closeness / low latency
let request_order = self.request_order(to.iter().copied());
let send_all_at_once = strategy.rs_send_all_at_once.unwrap_or(false);
// Build future for each request
// They are not started now: they are added below in a FuturesUnordered
// object that will take care of polling them (see below)
let msg = msg.into_req().map_err(netapp::error::Error::from)?;
let mut requests = request_order.into_iter().map(|to| {
let self2 = self.clone();
let msg = msg.clone();
let endpoint2 = endpoint.clone();
async move { self2.call(&endpoint2, to, msg, strategy).await }
});
// Vectors in which success results and errors will be collected
let mut successes = vec![];
let mut errors = vec![];
// resp_stream will contain all of the requests that are currently in flight.
// (for the moment none, they will be added in the loop below)
let mut resp_stream = FuturesUnordered::new();
// Do some requests and collect results
while successes.len() < quorum {
// If the current set of requests that are running is not enough to possibly
// reach quorum, start some new requests.
while send_all_at_once || successes.len() + resp_stream.len() < quorum {
if let Some(fut) = requests.next() {
resp_stream.push(fut)
} else {
break;
}
}
if successes.len() + resp_stream.len() < quorum {
// We know we won't ever reach quorum
break;
}
// Wait for one request to terminate
match resp_stream.next().await.unwrap() {
Ok(msg) => {
successes.push(msg);
}
Err(e) => {
errors.push(e);
}
}
}
if successes.len() >= quorum {
Ok(successes)
} else {
let errors = errors.iter().map(|e| format!("{}", e)).collect::<Vec<_>>();
Err(Error::Quorum(
quorum,
None,
successes.len(),
to.len(),
errors,
))
}
}
pub fn request_order(&self, nodes: impl Iterator<Item = Uuid>) -> Vec<Uuid> {
// Retrieve some status variables that we will use to sort requests
let peer_list = self.0.fullmesh.get_peer_list();
let layout = self.0.layout.read().unwrap();
let our_zone = match layout.current().node_role(&self.0.our_node_id) {
Some(pc) => &pc.zone,
None => "",
};
// Augment requests with some information used to sort them.
// The tuples are as follows:
// (is another node?, is another zone?, latency, node ID, request future)
// We store all of these tuples in a vec that we can sort.
// By sorting this vec, we priorize ourself, then nodes in the same zone,
// and within a same zone we priorize nodes with the lowest latency.
let mut nodes = nodes
.map(|to| {
let peer_zone = match layout.current().node_role(&to) {
Some(pc) => &pc.zone,
None => "",
};
let peer_avg_ping = peer_list
.iter()
.find(|x| x.id.as_ref() == to.as_slice())
.and_then(|pi| pi.avg_ping)
.unwrap_or_else(|| Duration::from_secs(10));
(
to != self.0.our_node_id,
peer_zone != our_zone,
peer_avg_ping,
to,
)
})
.collect::<Vec<_>>();
// Sort requests by (priorize ourself, priorize same zone, priorize low latency)
nodes.sort_by_key(|(diffnode, diffzone, ping, _to)| (*diffnode, *diffzone, *ping));
nodes
.into_iter()
.map(|(_, _, _, to)| to)
.collect::<Vec<_>>()
}
/// Make a RPC call to multiple servers, returning either a Vec of responses,
/// or an error if quorum could not be reached due to too many errors
///
/// Contrary to try_call_many, this fuction is especially made for broadcast
/// write operations. In particular:
///
/// - The request are sent to all specified nodes as soon as `try_write_many_sets`
/// is invoked.
///
/// - When `try_write_many_sets` returns, all remaining requests that haven't
/// completed move to a background task so that they have a chance to
/// complete successfully if there are no failures.
///
/// In addition, the nodes to which requests should be sent are divided in
/// "quorum sets", and `try_write_many_sets` only returns once a quorum
/// has been validated in each set. This is used in the case of cluster layout
/// changes, where data has to be written both in the old layout and in the
/// new one as long as all nodes have not successfully tranisitionned and
/// moved all data to the new layout.
pub async fn try_write_many_sets<M, N, H, S>(
&self,
endpoint: &Arc<Endpoint<M, H>>,
to_sets: &[Vec<Uuid>],
msg: N,
strategy: RequestStrategy,
) -> Result<Vec<S>, Error>
where
M: Rpc<Response = Result<S, Error>> + 'static,
N: IntoReq<M>,
H: StreamingEndpointHandler<M> + 'static,
S: Send + 'static,
{
let quorum = strategy
.rs_quorum
.expect("internal error: missing quorum value in try_write_many_sets");
let tracer = opentelemetry::global::tracer("garage");
let span_name = format!(
"RPC [{}] try_write_many_sets (quorum {} in {} sets)",
endpoint.path(),
quorum,
to_sets.len()
);
let mut span = tracer.start(span_name);
span.set_attribute(KeyValue::new("from", format!("{:?}", self.0.our_node_id)));
span.set_attribute(KeyValue::new("to", format!("{:?}", to_sets)));
span.set_attribute(KeyValue::new("quorum", quorum as i64));
self.try_write_many_sets_inner(endpoint, to_sets, msg, strategy, quorum)
.with_context(Context::current_with_span(span))
.await
}
async fn try_write_many_sets_inner<M, N, H, S>(
&self,
endpoint: &Arc<Endpoint<M, H>>,
to_sets: &[Vec<Uuid>],
msg: N,
strategy: RequestStrategy,
quorum: usize,
) -> Result<Vec<S>, Error>
where
M: Rpc<Response = Result<S, Error>> + 'static,
N: IntoReq<M>,
H: StreamingEndpointHandler<M> + 'static,
S: Send + 'static,
{
let msg = msg.into_req().map_err(netapp::error::Error::from)?;
// Peers may appear in many quorum sets. Here, build a list of peers,
// mapping to the index of the quorum sets in which they appear.
let mut peers = HashMap::<Uuid, Vec<usize>>::new();
for (i, set) in to_sets.iter().enumerate() {
for peer in set.iter() {
peers.entry(*peer).or_default().push(i);
}
}
// Send one request to each peer of the quorum sets
let requests = peers.iter().map(|(peer, _)| {
let self2 = self.clone();
let msg = msg.clone();
let endpoint2 = endpoint.clone();
let to = *peer;
async move { (to, self2.call(&endpoint2, to, msg, strategy).await) }
});
let mut resp_stream = requests.collect::<FuturesUnordered<_>>();
// Success and error responses will be collected in these two vectors
let mut successes = vec![];
let mut errors = vec![];
// `set_counters` is used to keep track of how many success and error
// responses are received within each quorum set. When a node returns
// its response, it counts as a sucess/an error for all of the quorum
// sets which it is part of.
let mut set_counters = vec![(0, 0); to_sets.len()];
// Drive requests to completion
while let Some((node, resp)) = resp_stream.next().await {
// Store the response in the correct vector and increment the
// appropriate counters
match resp {
Ok(msg) => {
for set in peers.get(&node).unwrap().iter() {
set_counters[*set].0 += 1;
}
successes.push(msg);
}
Err(e) => {
for set in peers.get(&node).unwrap().iter() {
set_counters[*set].1 += 1;
}
errors.push(e);
}
}
// If we have a quorum of ok in all quorum sets, then it's a success!
if set_counters.iter().all(|(ok_cnt, _)| *ok_cnt >= quorum) {
// Continue all other requets in background
tokio::spawn(async move {
resp_stream.collect::<Vec<(Uuid, Result<_, _>)>>().await;
});
return Ok(successes);
}
// If there is a quorum set for which too many errors were received,
// we know it's impossible to get a quorum, so return immediately.
if set_counters
.iter()
.enumerate()
.any(|(i, (_, err_cnt))| err_cnt + quorum > to_sets[i].len())
{
break;
}
}
// At this point, there is no quorum and we know that a quorum
// will never be achieved. Currently, we drop all remaining requests.
// Should we still move them to background so that they can continue
// for non-failed nodes? Not doing so has no impact on correctness,
// but it means that more cancellation messages will be sent. Idk.
// (When an in-progress request future is dropped, Netapp automatically
// sends a cancellation message to the remote node to inform it that
// the result is no longer needed. In turn, if the remote node receives
// the cancellation message in time, it interrupts the task of the
// running request handler.)
// Failure, could not get quorum
let errors = errors.iter().map(|e| format!("{}", e)).collect::<Vec<_>>();
Err(Error::Quorum(
quorum,
Some(to_sets.len()),
successes.len(),
peers.len(),
errors,
))
}
}