use std::cmp::Ordering;
use std::collections::HashMap;
use std::collections::HashSet;
use hex::ToHex;
use itertools::Itertools;
use serde::{Deserialize, Serialize};
use garage_util::crdt::{AutoCrdt, Crdt, LwwMap};
use garage_util::data::*;
use crate::graph_algo::*;
use crate::ring::*;
use std::convert::TryInto;
//The Message type will be used to collect information on the algorithm.
type Message = Vec<String>;
/// The layout of the cluster, i.e. the list of roles
/// which are assigned to each cluster node
#[derive(Clone, Debug, Serialize, Deserialize)]
pub struct ClusterLayout {
pub version: u64,
pub replication_factor: usize,
#[serde(default="default_one")]
pub zone_redundancy: usize,
//This attribute is only used to retain the previously computed partition size,
//to know to what extent does it change with the layout update.
#[serde(default="default_zero")]
pub partition_size: u32,
pub roles: LwwMap<Uuid, NodeRoleV>,
/// node_id_vec: a vector of node IDs with a role assigned
/// in the system (this includes gateway nodes).
/// The order here is different than the vec stored by `roles`, because:
/// 1. non-gateway nodes are first so that they have lower numbers holding
/// in u8 (the number of non-gateway nodes is at most 256).
/// 2. nodes that don't have a role are excluded (but they need to
/// stay in the CRDT as tombstones)
pub node_id_vec: Vec<Uuid>,
/// the assignation of data partitions to node, the values
/// are indices in node_id_vec
#[serde(with = "serde_bytes")]
pub ring_assignation_data: Vec<CompactNodeType>,
/// Role changes which are staged for the next version of the layout
pub staging: LwwMap<Uuid, NodeRoleV>,
pub staging_hash: Hash,
}
fn default_one() -> usize{
return 1;
}
fn default_zero() -> u32{
return 0;
}
const NB_PARTITIONS : usize = 1usize << PARTITION_BITS;
#[derive(PartialEq, Eq, PartialOrd, Ord, Clone, Debug, Serialize, Deserialize)]
pub struct NodeRoleV(pub Option<NodeRole>);
impl AutoCrdt for NodeRoleV {
const WARN_IF_DIFFERENT: bool = true;
}
/// The user-assigned roles of cluster nodes
#[derive(PartialEq, Eq, PartialOrd, Ord, Clone, Debug, Serialize, Deserialize)]
pub struct NodeRole {
/// Datacenter at which this entry belong. This information might be used to perform a better
/// geodistribution
pub zone: String,
/// The (relative) capacity of the node
/// If this is set to None, the node does not participate in storing data for the system
/// and is only active as an API gateway to other nodes
pub capacity: Option<u32>,
/// A set of tags to recognize the node
pub tags: Vec<String>,
}
impl NodeRole {
pub fn capacity_string(&self) -> String {
match self.capacity {
Some(c) => format!("{}", c),
None => "gateway".to_string(),
}
}
pub fn tags_string(&self) -> String {
let mut tags = String::new();
if self.tags.len() == 0 {
return tags
}
tags.push_str(&self.tags[0].clone());
for t in 1..self.tags.len(){
tags.push_str(",");
tags.push_str(&self.tags[t].clone());
}
return tags;
}
}
impl ClusterLayout {
pub fn new(replication_factor: usize, zone_redundancy: usize) -> Self {
let empty_lwwmap = LwwMap::new();
let empty_lwwmap_hash = blake2sum(&rmp_to_vec_all_named(&empty_lwwmap).unwrap()[..]);
ClusterLayout {
version: 0,
replication_factor,
zone_redundancy,
partition_size: 0,
roles: LwwMap::new(),
node_id_vec: Vec::new(),
ring_assignation_data: Vec::new(),
staging: empty_lwwmap,
staging_hash: empty_lwwmap_hash,
}
}
pub fn merge(&mut self, other: &ClusterLayout) -> bool {
match other.version.cmp(&self.version) {
Ordering::Greater => {
*self = other.clone();
true
}
Ordering::Equal => {
self.staging.merge(&other.staging);
let new_staging_hash = blake2sum(&rmp_to_vec_all_named(&self.staging).unwrap()[..]);
let changed = new_staging_hash != self.staging_hash;
self.staging_hash = new_staging_hash;
changed
}
Ordering::Less => false,
}
}
/// Returns a list of IDs of nodes that currently have
/// a role in the cluster
pub fn node_ids(&self) -> &[Uuid] {
&self.node_id_vec[..]
}
pub fn num_nodes(&self) -> usize {
self.node_id_vec.len()
}
/// Returns the role of a node in the layout
pub fn node_role(&self, node: &Uuid) -> Option<&NodeRole> {
match self.roles.get(node) {
Some(NodeRoleV(Some(v))) => Some(v),
_ => None,
}
}
///Returns the uuids of the non_gateway nodes in self.node_id_vec.
pub fn useful_nodes(&self) -> Vec<Uuid> {
let mut result = Vec::<Uuid>::new();
for uuid in self.node_id_vec.iter() {
match self.node_role(uuid) {
Some(role) if role.capacity != None => result.push(*uuid),
_ => ()
}
}
return result;
}
///Given a node uuids, this function returns the label of its zone
pub fn get_node_zone(&self, uuid : &Uuid) -> Result<String,String> {
match self.node_role(uuid) {
Some(role) => return Ok(role.zone.clone()),
_ => return Err("The Uuid does not correspond to a node present in the cluster.".to_string())
}
}
///Given a node uuids, this function returns its capacity or fails if it does not have any
pub fn get_node_capacity(&self, uuid : &Uuid) -> Result<u32,String> {
match self.node_role(uuid) {
Some(NodeRole{capacity : Some(cap), zone: _, tags: _}) => return Ok(*cap),
_ => return Err("The Uuid does not correspond to a node present in the \
cluster or this node does not have a positive capacity.".to_string())
}
}
///Returns the sum of capacities of non gateway nodes in the cluster
pub fn get_total_capacity(&self) -> Result<u32,String> {
let mut total_capacity = 0;
for uuid in self.useful_nodes().iter() {
total_capacity += self.get_node_capacity(uuid)?;
}
return Ok(total_capacity);
}
/// Check a cluster layout for internal consistency
/// returns true if consistent, false if error
pub fn check(&self) -> bool {
// Check that the hash of the staging data is correct
let staging_hash = blake2sum(&rmp_to_vec_all_named(&self.staging).unwrap()[..]);
if staging_hash != self.staging_hash {
return false;
}
// Check that node_id_vec contains the correct list of nodes
let mut expected_nodes = self
.roles
.items()
.iter()
.filter(|(_, _, v)| v.0.is_some())
.map(|(id, _, _)| *id)
.collect::<Vec<_>>();
expected_nodes.sort();
let mut node_id_vec = self.node_id_vec.clone();
node_id_vec.sort();
if expected_nodes != node_id_vec {
return false;
}
// Check that the assignation data has the correct length
if self.ring_assignation_data.len() != (1 << PARTITION_BITS) * self.replication_factor {
return false;
}
// Check that the assigned nodes are correct identifiers
// of nodes that are assigned a role
// and that role is not the role of a gateway nodes
for x in self.ring_assignation_data.iter() {
if *x as usize >= self.node_id_vec.len() {
return false;
}
let node = self.node_id_vec[*x as usize];
match self.roles.get(&node) {
Some(NodeRoleV(Some(x))) if x.capacity.is_some() => (),
_ => return false,
}
}
//Check that every partition is associated to distinct nodes
let rf = self.replication_factor;
for p in 0..(1 << PARTITION_BITS) {
let nodes_of_p = self.ring_assignation_data[rf*p..rf*(p+1)].to_vec();
if nodes_of_p.iter().unique().count() != rf {
return false;
}
//Check that every partition is spread over at least zone_redundancy zones.
let zones_of_p = nodes_of_p.iter()
.map(|n| self.get_node_zone(&self.node_id_vec[*n as usize])
.expect("Zone not found."));
if zones_of_p.unique().count() < self.zone_redundancy {
return false;
}
}
//Check that the nodes capacities is consistent with the stored partitions
let mut node_usage = vec![0; MAX_NODE_NUMBER];
for n in self.ring_assignation_data.iter() {
node_usage[*n as usize] += 1;
}
for n in 0..MAX_NODE_NUMBER {
if node_usage[n] > 0 {
let uuid = self.node_id_vec[n];
if node_usage[n]*self.partition_size > self.get_node_capacity(&uuid)
.expect("Critical Error"){
return false;
}
}
}
//Check that the partition size stored is the one computed by the asignation
//algorithm.
let cl2 = self.clone();
let (_ , zone_to_id) = cl2.generate_zone_ids().expect("Critical Error");
let partition_size = cl2.compute_optimal_partition_size(&zone_to_id).expect("Critical Error");
if partition_size != self.partition_size {
return false;
}
true
}
}
impl ClusterLayout {
/// This function calculates a new partition-to-node assignation.
/// The computed assignation respects the node replication factor
/// and the zone redundancy parameter It maximizes the capacity of a
/// partition (assuming all partitions have the same size).
/// Among such optimal assignation, it minimizes the distance to
/// the former assignation (if any) to minimize the amount of
/// data to be moved.
pub fn calculate_partition_assignation(&mut self, replication:usize, redundancy:usize) -> Result<Message,String> {
//The nodes might have been updated, some might have been deleted.
//So we need to first update the list of nodes and retrieve the
//assignation.
//We update the node ids, since the node list might have changed with the staged
//changes in the layout. We retrieve the old_assignation reframed with the new ids
let old_assignation_opt = self.update_node_id_vec()?;
self.replication_factor = replication;
self.zone_redundancy = redundancy;
let mut msg = Message::new();
msg.push(format!("Computation of a new cluster layout where partitions are \
replicated {} times on at least {} distinct zones.", replication, redundancy));
//We generate for once numerical ids for the zone, to use them as indices in the
//flow graphs.
let (id_to_zone , zone_to_id) = self.generate_zone_ids()?;
msg.push(format!("The cluster contains {} nodes spread over {} zones.",
self.useful_nodes().len(), id_to_zone.len()));
//We compute the optimal partition size
//Capacities should be given in a unit so that partition size is at least 100.
//In this case, integer rounding plays a marginal role in the percentages of
//optimality.
let partition_size = self.compute_optimal_partition_size(&zone_to_id)?;
if old_assignation_opt != None {
msg.push(format!("Given the replication and redundancy constraint, the \
optimal size of a partition is {}. In the previous layout, it used to \
be {}.", partition_size, self.partition_size));
}
else {
msg.push(format!("Given the replication and redundancy constraints, the \
optimal size of a partition is {}.", partition_size));
}
self.partition_size = partition_size;
//We compute a first flow/assignment that is heuristically close to the previous
//assignment
let mut gflow = self.compute_candidate_assignment( &zone_to_id, &old_assignation_opt)?;
if let Some(assoc) = &old_assignation_opt {
//We minimize the distance to the previous assignment.
self.minimize_rebalance_load(&mut gflow, &zone_to_id, &assoc)?;
}
msg.append(&mut self.output_stat(&gflow, &old_assignation_opt, &zone_to_id,&id_to_zone)?);
msg.push("".to_string());
//We update the layout structure
self.update_ring_from_flow(id_to_zone.len() , &gflow)?;
return Ok(msg);
}
/// The LwwMap of node roles might have changed. This function updates the node_id_vec
/// and returns the assignation given by ring, with the new indices of the nodes, and
/// None if the node is not present anymore.
/// We work with the assumption that only this function and calculate_new_assignation
/// do modify assignation_ring and node_id_vec.
fn update_node_id_vec(&mut self) -> Result< Option< Vec<Vec<usize> > > ,String> {
// (1) We compute the new node list
//Non gateway nodes should be coded on 8bits, hence they must be first in the list
//We build the new node ids
let mut new_non_gateway_nodes: Vec<Uuid> = self.roles.items().iter()
.filter(|(_, _, v)|
match &v.0 {Some(r) if r.capacity != None => true, _=> false })
.map(|(k, _, _)| *k).collect();
if new_non_gateway_nodes.len() > MAX_NODE_NUMBER {
return Err(format!("There are more than {} non-gateway nodes in the new \
layout. This is not allowed.", MAX_NODE_NUMBER).to_string());
}
let mut new_gateway_nodes: Vec<Uuid> = self.roles.items().iter()
.filter(|(_, _, v)|
match v {NodeRoleV(Some(r)) if r.capacity == None => true, _=> false })
.map(|(k, _, _)| *k).collect();
let nb_useful_nodes = new_non_gateway_nodes.len();
let mut new_node_id_vec = Vec::<Uuid>::new();
new_node_id_vec.append(&mut new_non_gateway_nodes);
new_node_id_vec.append(&mut new_gateway_nodes);
// (2) We retrieve the old association
//We rewrite the old association with the new indices. We only consider partition
//to node assignations where the node is still in use.
let nb_partitions = 1usize << PARTITION_BITS;
let mut old_assignation = vec![ Vec::<usize>::new() ; nb_partitions];
if self.ring_assignation_data.len() == 0 {
//This is a new association
return Ok(None);
}
if self.ring_assignation_data.len() != nb_partitions * self.replication_factor {
return Err("The old assignation does not have a size corresponding to \
the old replication factor or the number of partitions.".to_string());
}
//We build a translation table between the uuid and new ids
let mut uuid_to_new_id = HashMap::<Uuid, usize>::new();
//We add the indices of only the new non-gateway nodes that can be used in the
//association ring
for i in 0..nb_useful_nodes {
uuid_to_new_id.insert(new_node_id_vec[i], i );
}
let rf= self.replication_factor;
for p in 0..nb_partitions {
for old_id in &self.ring_assignation_data[p*rf..(p+1)*rf] {
let uuid = self.node_id_vec[*old_id as usize];
if uuid_to_new_id.contains_key(&uuid) {
old_assignation[p].push(uuid_to_new_id[&uuid]);
}
}
}
//We write the results
self.node_id_vec = new_node_id_vec;
self.ring_assignation_data = Vec::<CompactNodeType>::new();
return Ok(Some(old_assignation));
}
///This function generates ids for the zone of the nodes appearing in
///self.node_id_vec.
fn generate_zone_ids(&self) -> Result<(Vec<String>, HashMap<String, usize>),String>{
let mut id_to_zone = Vec::<String>::new();
let mut zone_to_id = HashMap::<String,usize>::new();
for uuid in self.node_id_vec.iter() {
if self.roles.get(uuid) == None {
return Err("The uuid was not found in the node roles (this should \
not happen, it might be a critical error).".to_string());
}
match self.node_role(&uuid) {
Some(r) => if !zone_to_id.contains_key(&r.zone) && r.capacity != None {
zone_to_id.insert(r.zone.clone() , id_to_zone.len());
id_to_zone.push(r.zone.clone());
}
_ => ()
}
}
return Ok((id_to_zone, zone_to_id));
}
///This function computes by dichotomy the largest realizable partition size, given
///the layout.
fn compute_optimal_partition_size(&self, zone_to_id: &HashMap<String, usize>) -> Result<u32,String>{
let nb_partitions = 1usize << PARTITION_BITS;
let empty_set = HashSet::<(usize,usize)>::new();
let mut g = self.generate_flow_graph(1, zone_to_id, &empty_set)?;
g.compute_maximal_flow()?;
if g.get_flow_value()? < (nb_partitions*self.replication_factor).try_into().unwrap() {
return Err("The storage capacity of he cluster is to small. It is \
impossible to store partitions of size 1.".to_string());
}
let mut s_down = 1;
let mut s_up = self.get_total_capacity()?;
while s_down +1 < s_up {
g = self.generate_flow_graph((s_down+s_up)/2, zone_to_id, &empty_set)?;
g.compute_maximal_flow()?;
if g.get_flow_value()? < (nb_partitions*self.replication_factor).try_into().unwrap() {
s_up = (s_down+s_up)/2;
}
else {
s_down = (s_down+s_up)/2;
}
}
return Ok(s_down);
}
fn generate_graph_vertices(nb_zones : usize, nb_nodes : usize) -> Vec<Vertex> {
let mut vertices = vec![Vertex::Source, Vertex::Sink];
for p in 0..NB_PARTITIONS {
vertices.push(Vertex::Pup(p));
vertices.push(Vertex::Pdown(p));
for z in 0..nb_zones {
vertices.push(Vertex::PZ(p, z));
}
}
for n in 0..nb_nodes {
vertices.push(Vertex::N(n));
}
return vertices;
}
fn generate_flow_graph(&self, size: u32, zone_to_id: &HashMap<String, usize>, exclude_assoc : &HashSet<(usize,usize)>) -> Result<Graph<FlowEdge>, String> {
let vertices = ClusterLayout::generate_graph_vertices(zone_to_id.len(),
self.useful_nodes().len());
let mut g= Graph::<FlowEdge>::new(&vertices);
let nb_zones = zone_to_id.len();
for p in 0..NB_PARTITIONS {
g.add_edge(Vertex::Source, Vertex::Pup(p), self.zone_redundancy as u32)?;
g.add_edge(Vertex::Source, Vertex::Pdown(p), (self.replication_factor - self.zone_redundancy) as u32)?;
for z in 0..nb_zones {
g.add_edge(Vertex::Pup(p) , Vertex::PZ(p,z) , 1)?;
g.add_edge(Vertex::Pdown(p) , Vertex::PZ(p,z) ,
self.replication_factor as u32)?;
}
}
for n in 0..self.useful_nodes().len() {
let node_capacity = self.get_node_capacity(&self.node_id_vec[n])?;
let node_zone = zone_to_id[&self.get_node_zone(&self.node_id_vec[n])?];
g.add_edge(Vertex::N(n), Vertex::Sink, node_capacity/size)?;
for p in 0..NB_PARTITIONS {
if !exclude_assoc.contains(&(p,n)) {
g.add_edge(Vertex::PZ(p, node_zone), Vertex::N(n), 1)?;
}
}
}
return Ok(g);
}
fn compute_candidate_assignment(&self, zone_to_id: &HashMap<String, usize>,
old_assoc_opt : &Option<Vec< Vec<usize> >>) -> Result<Graph<FlowEdge>, String > {
//We list the edges that are not used in the old association
let mut exclude_edge = HashSet::<(usize,usize)>::new();
if let Some(old_assoc) = old_assoc_opt {
let nb_nodes = self.useful_nodes().len();
for p in 0..NB_PARTITIONS {
for n in 0..nb_nodes {
exclude_edge.insert((p,n));
}
for n in old_assoc[p].iter() {
exclude_edge.remove(&(p,*n));
}
}
}
//We compute the best flow using only the edges used in the old assoc
let mut g = self.generate_flow_graph(self.partition_size, zone_to_id, &exclude_edge )?;
g.compute_maximal_flow()?;
for (p,n) in exclude_edge.iter() {
let node_zone = zone_to_id[&self.get_node_zone(&self.node_id_vec[*n])?];
g.add_edge(Vertex::PZ(*p,node_zone), Vertex::N(*n), 1)?;
}
g.compute_maximal_flow()?;
return Ok(g);
}
fn minimize_rebalance_load(&self, gflow: &mut Graph<FlowEdge>, zone_to_id: &HashMap<String, usize>, old_assoc : &Vec< Vec<usize> >) -> Result<(), String > {
let mut cost = CostFunction::new();
for p in 0..NB_PARTITIONS {
for n in old_assoc[p].iter() {
let node_zone = zone_to_id[&self.get_node_zone(&self.node_id_vec[*n])?];
cost.insert((Vertex::PZ(p,node_zone), Vertex::N(*n)), -1);
}
}
let nb_nodes = self.useful_nodes().len();
let path_length = 4*nb_nodes;
gflow.optimize_flow_with_cost(&cost, path_length)?;
return Ok(());
}
fn update_ring_from_flow(&mut self, nb_zones : usize, gflow: &Graph<FlowEdge> ) -> Result<(), String>{
self.ring_assignation_data = Vec::<CompactNodeType>::new();
for p in 0..NB_PARTITIONS {
for z in 0..nb_zones {
let assoc_vertex = gflow.get_positive_flow_from(Vertex::PZ(p,z))?;
for vertex in assoc_vertex.iter() {
match vertex{
Vertex::N(n) => self.ring_assignation_data.push((*n).try_into().unwrap()),
_ => ()
}
}
}
}
if self.ring_assignation_data.len() != NB_PARTITIONS*self.replication_factor {
return Err("Critical Error : the association ring we produced does not \
have the right size.".to_string());
}
return Ok(());
}
//This function returns a message summing up the partition repartition of the new
//layout.
fn output_stat(&self , gflow : &Graph<FlowEdge>,
old_assoc_opt : &Option< Vec<Vec<usize>> >,
zone_to_id: &HashMap<String, usize>,
id_to_zone : &Vec<String>) -> Result<Message, String>{
let mut msg = Message::new();
let nb_partitions = 1usize << PARTITION_BITS;
let used_cap = self.partition_size * nb_partitions as u32 *
self.replication_factor as u32;
let total_cap = self.get_total_capacity()?;
let percent_cap = 100.0*(used_cap as f32)/(total_cap as f32);
msg.push(format!("Available capacity / Total cluster capacity: {} / {} ({:.1} %)",
used_cap , total_cap , percent_cap ));
msg.push(format!(""));
msg.push(format!("If the percentage is to low, it might be that the \
replication/redundancy constraints force the use of nodes/zones with small \
storage capacities. \
You might want to rebalance the storage capacities or relax the constraints. \
See the detailed statistics below and look for saturated nodes/zones."));
msg.push(format!("Recall that because of the replication, the actual available \
storage capacity is {} / {} = {}.",
used_cap , self.replication_factor ,
used_cap/self.replication_factor as u32));
//We define and fill in the following tables
let storing_nodes = self.useful_nodes();
let mut new_partitions = vec![0; storing_nodes.len()];
let mut stored_partitions = vec![0; storing_nodes.len()];
let mut new_partitions_zone = vec![0; id_to_zone.len()];
let mut stored_partitions_zone = vec![0; id_to_zone.len()];
for p in 0..nb_partitions {
for z in 0..id_to_zone.len() {
let pz_nodes = gflow.get_positive_flow_from(Vertex::PZ(p,z))?;
if pz_nodes.len() > 0 {
stored_partitions_zone[z] += 1;
if let Some(old_assoc) = old_assoc_opt {
let mut old_zones_of_p = Vec::<usize>::new();
for n in old_assoc[p].iter() {
old_zones_of_p.push(
zone_to_id[&self.get_node_zone(&self.node_id_vec[*n])?]);
}
if !old_zones_of_p.contains(&z) {
new_partitions_zone[z] += 1;
}
}
}
for vert in pz_nodes.iter() {
if let Vertex::N(n) = *vert {
stored_partitions[n] += 1;
if let Some(old_assoc) = old_assoc_opt {
if !old_assoc[p].contains(&n) {
new_partitions[n] += 1;
}
}
}
}
}
}
if *old_assoc_opt == None {
new_partitions = stored_partitions.clone();
new_partitions_zone = stored_partitions_zone.clone();
}
//We display the statistics
msg.push(format!(""));
if *old_assoc_opt != None {
let total_new_partitions : usize = new_partitions.iter().sum();
msg.push(format!("A total of {} new copies of partitions need to be \
transferred.", total_new_partitions));
}
msg.push(format!(""));
msg.push(format!("Detailed statistics by zones and nodes."));
for z in 0..id_to_zone.len(){
let mut nodes_of_z = Vec::<usize>::new();
for n in 0..storing_nodes.len(){
if self.get_node_zone(&self.node_id_vec[n])? == id_to_zone[z] {
nodes_of_z.push(n);
}
}
let replicated_partitions : usize = nodes_of_z.iter()
.map(|n| stored_partitions[*n]).sum();
msg.push(format!(""));
msg.push(format!("Zone {}: {} distinct partitions stored ({} new, \
{} partition copies) ", id_to_zone[z], stored_partitions_zone[z],
new_partitions_zone[z], replicated_partitions));
let available_cap_z : u32 = self.partition_size*replicated_partitions as u32;
let mut total_cap_z = 0;
for n in nodes_of_z.iter() {
total_cap_z += self.get_node_capacity(&self.node_id_vec[*n])?;
}
let percent_cap_z = 100.0*(available_cap_z as f32)/(total_cap_z as f32);
msg.push(format!(" Available capacity / Total capacity: {}/{} ({:.1}%).",
available_cap_z, total_cap_z, percent_cap_z));
for n in nodes_of_z.iter() {
let available_cap_n = stored_partitions[*n] as u32 *self.partition_size;
let total_cap_n =self.get_node_capacity(&self.node_id_vec[*n])?;
let tags_n = (self.node_role(&self.node_id_vec[*n])
.ok_or("Node not found."))?.tags_string();
msg.push(format!(" Node {}: {} partitions ({} new) ; \
available/total capacity: {} / {} ({:.1}%) ; tags:{}",
&self.node_id_vec[*n].to_vec()[0..2].to_vec().encode_hex::<String>(),
stored_partitions[*n],
new_partitions[*n], available_cap_n, total_cap_n,
(available_cap_n as f32)/(total_cap_n as f32)*100.0 ,
tags_n));
}
}
return Ok(msg);
}
}
//====================================================================================
#[cfg(test)]
mod tests {
use super::*;
use std::io::*;
// use itertools::Itertools;
/*
fn check_assignation(cl: &ClusterLayout) {
//Check that input data has the right format
let nb_partitions = 1usize << PARTITION_BITS;
assert!(cl.ring_assignation_data.len() == nb_partitions * cl.replication_factor);
//Check that is is a correct assignation with zone redundancy
let rf = cl.replication_factor;
for i in 0..nb_partitions {
assert!(
rf == cl.ring_assignation_data[rf * i..rf * (i + 1)]
.iter()
.map(|nod| node_zone[*nod as usize].clone())
.unique()
.count()
);
}
let nb_nodes = cl.node_id_vec.len();
//Check optimality
let node_nb_part = (0..nb_nodes)
.map(|i| {
cl.ring_assignation_data
.iter()
.filter(|x| **x == i as u8)
.count()
})
.collect::<Vec<_>>();
let zone_vec = node_zone.iter().unique().collect::<Vec<_>>();
let zone_nb_part = zone_vec
.iter()
.map(|z| {
cl.ring_assignation_data
.iter()
.filter(|x| node_zone[**x as usize] == **z)
.count()
})
.collect::<Vec<_>>();
//Check optimality of the zone assignation : would it be better for the
//node_capacity/node_partitions ratio to change the assignation of a partition
if let Some(idmin) = (0..nb_nodes).min_by(|i, j| {
(node_capacity[*i] * node_nb_part[*j] as u32)
.cmp(&(node_capacity[*j] * node_nb_part[*i] as u32))
}) {
if let Some(idnew) = (0..nb_nodes)
.filter(|i| {
if let Some(p) = zone_vec.iter().position(|z| **z == node_zone[*i]) {
zone_nb_part[p] < nb_partitions
} else {
false
}
})
.max_by(|i, j| {
(node_capacity[*i] * (node_nb_part[*j] as u32 + 1))
.cmp(&(node_capacity[*j] * (node_nb_part[*i] as u32 + 1)))
}) {
assert!(
node_capacity[idmin] * (node_nb_part[idnew] as u32 + 1)
>= node_capacity[idnew] * node_nb_part[idmin] as u32
);
}
}
//In every zone, check optimality of the nod assignation
for z in zone_vec {
let node_of_z_iter = (0..nb_nodes).filter(|id| node_zone[*id] == *z);
if let Some(idmin) = node_of_z_iter.clone().min_by(|i, j| {
(node_capacity[*i] * node_nb_part[*j] as u32)
.cmp(&(node_capacity[*j] * node_nb_part[*i] as u32))
}) {
if let Some(idnew) = node_of_z_iter.min_by(|i, j| {
(node_capacity[*i] * (node_nb_part[*j] as u32 + 1))
.cmp(&(node_capacity[*j] * (node_nb_part[*i] as u32 + 1)))
}) {
assert!(
node_capacity[idmin] * (node_nb_part[idnew] as u32 + 1)
>= node_capacity[idnew] * node_nb_part[idmin] as u32
);
}
}
}
}
*/
fn show_msg(msg : &Message) {
for s in msg.iter(){
println!("{}",s);
}
}
fn update_layout(
cl: &mut ClusterLayout,
node_id_vec: &Vec<u8>,
node_capacity_vec: &Vec<u32>,
node_zone_vec: &Vec<String>,
) {
for i in 0..node_id_vec.len() {
if let Some(x) = FixedBytes32::try_from(&[i as u8; 32]) {
cl.node_id_vec.push(x);
}
let update = cl.roles.update_mutator(
cl.node_id_vec[i],
NodeRoleV(Some(NodeRole {
zone: (node_zone_vec[i].to_string()),
capacity: (Some(node_capacity_vec[i])),
tags: (vec![]),
})),
);
cl.roles.merge(&update);
}
}
#[test]
fn test_assignation() {
std::io::stdout().flush().ok().expect("Could not flush stdout");
let mut node_id_vec = vec![1, 2, 3];
let mut node_capacity_vec = vec![4000, 1000, 2000];
let mut node_zone_vec = vec!["A", "B", "C"]
.into_iter()
.map(|x| x.to_string())
.collect();
let mut cl = ClusterLayout {
node_id_vec: vec![],
roles: LwwMap::new(),
replication_factor: 3,
zone_redundancy: 1,
partition_size: 0,
ring_assignation_data: vec![],
version: 0,
staging: LwwMap::new(),
staging_hash: blake2sum(&rmp_to_vec_all_named(&LwwMap::<Uuid, NodeRoleV>::new()).unwrap()[..]),
};
update_layout(&mut cl, &node_id_vec, &node_capacity_vec, &node_zone_vec);
show_msg(&cl.calculate_partition_assignation(3,3).unwrap());
assert!(cl.check());
node_id_vec = vec![1, 2, 3, 4, 5, 6, 7, 8, 9];
node_capacity_vec = vec![4000, 1000, 1000, 3000, 1000, 1000, 2000, 10000, 2000];
node_zone_vec = vec!["A", "B", "C", "C", "C", "B", "G", "H", "I"]
.into_iter()
.map(|x| x.to_string())
.collect();
update_layout(&mut cl, &node_id_vec, &node_capacity_vec, &node_zone_vec);
show_msg(&cl.calculate_partition_assignation(3,3).unwrap());
assert!(cl.check());
node_capacity_vec = vec![4000, 1000, 2000, 7000, 1000, 1000, 2000, 10000, 2000];
update_layout(&mut cl, &node_id_vec, &node_capacity_vec, &node_zone_vec);
show_msg(&cl.calculate_partition_assignation(3,3).unwrap());
assert!(cl.check());
node_capacity_vec = vec![4000000, 4000000, 2000000, 7000000, 1000000, 9000000, 2000000, 10000, 2000000];
update_layout(&mut cl, &node_id_vec, &node_capacity_vec, &node_zone_vec);
show_msg(&cl.calculate_partition_assignation(3,1).unwrap());
assert!(cl.check());
}
}