aboutsummaryrefslogblamecommitdiff
path: root/src/rpc/graph_algo.rs
blob: 13c60692c48773747e47955789e17b162a2c1a4e (plain) (tree)
1
2
3
4
5
6
7




                                                                       
                              
                               




                                                                              







                                                                               

 



                                             



                                                                                        





                                                           
                                    









                                                                                 


                                           
 
                           

 













                                                                     

 






































































































































































































































































                                                                                                                    

 

















































                                                                                                  


                                                                              































                                                                                   
 
//! This module deals with graph algorithms.
//! It is used in layout.rs to build the partition to node assignation.

use rand::prelude::SliceRandom;
use std::cmp::{max, min};
use std::collections::HashMap;
use std::collections::VecDeque;

//Vertex data structures used in all the graphs used in layout.rs.
//usize parameters correspond to node/zone/partitions ids.
//To understand the vertex roles below, please refer to the formal description
//of the layout computation algorithm.
#[derive(Clone, Copy, Debug, PartialEq, Eq, Hash)]
pub enum Vertex {
	Source,
	Pup(usize),       //The vertex p+ of partition p
	Pdown(usize),     //The vertex p- of partition p
	PZ(usize, usize), //The vertex corresponding to x_(partition p, zone z)
	N(usize),         //The vertex corresponding to node n
	Sink,
}

//Edge data structure for the flow algorithm.
//The graph is stored as an adjacency list
#[derive(Clone, Copy, Debug)]
pub struct FlowEdge {
	cap: u32,    //flow maximal capacity of the edge
	flow: i32,   //flow value on the edge
	dest: usize, //destination vertex id
	rev: usize,  //index of the reversed edge (v, self) in the edge list of vertex v
}

//Edge data structure for the detection of negative cycles.
//The graph is stored as a list of edges (u,v).
#[derive(Clone, Copy, Debug)]
pub struct WeightedEdge {
	w: i32, //weight of the edge
	dest: usize,
}

pub trait Edge: Clone + Copy {}
impl Edge for FlowEdge {}
impl Edge for WeightedEdge {}

//Struct for the graph structure. We do encapsulation here to be able to both
//provide user friendly Vertex enum to address vertices, and to use usize indices
//and Vec instead of HashMap in the graph algorithm to optimize execution speed.
pub struct Graph<E: Edge> {
	vertextoid: HashMap<Vertex, usize>,
	idtovertex: Vec<Vertex>,

	graph: Vec<Vec<E>>,
}

pub type CostFunction = HashMap<(Vertex, Vertex), i32>;

impl<E: Edge> Graph<E> {
	pub fn new(vertices: &[Vertex]) -> Self {
		let mut map = HashMap::<Vertex, usize>::new();
		for (i, vert) in vertices.iter().enumerate() {
			map.insert(*vert, i);
		}
		Graph::<E> {
			vertextoid: map,
			idtovertex: vertices.to_vec(),
			graph: vec![Vec::<E>::new(); vertices.len()],
		}
	}
}

impl Graph<FlowEdge> {
	//This function adds a directed edge to the graph with capacity c, and the
	//corresponding reversed edge with capacity 0.
	pub fn add_edge(&mut self, u: Vertex, v: Vertex, c: u32) -> Result<(), String> {
		if !self.vertextoid.contains_key(&u) || !self.vertextoid.contains_key(&v) {
			return Err("The graph does not contain the provided vertex.".to_string());
		}
		let idu = self.vertextoid[&u];
		let idv = self.vertextoid[&v];
		let rev_u = self.graph[idu].len();
		let rev_v = self.graph[idv].len();
		self.graph[idu].push(FlowEdge {
			cap: c,
			dest: idv,
			flow: 0,
			rev: rev_v,
		});
		self.graph[idv].push(FlowEdge {
			cap: 0,
			dest: idu,
			flow: 0,
			rev: rev_u,
		});
		Ok(())
	}

	//This function returns the list of vertices that receive a positive flow from
	//vertex v.
	pub fn get_positive_flow_from(&self, v: Vertex) -> Result<Vec<Vertex>, String> {
		if !self.vertextoid.contains_key(&v) {
			return Err("The graph does not contain the provided vertex.".to_string());
		}
		let idv = self.vertextoid[&v];
		let mut result = Vec::<Vertex>::new();
		for edge in self.graph[idv].iter() {
			if edge.flow > 0 {
				result.push(self.idtovertex[edge.dest]);
			}
		}
		Ok(result)
	}

	//This function returns the value of the flow incoming to v.
	pub fn get_inflow(&self, v: Vertex) -> Result<i32, String> {
		if !self.vertextoid.contains_key(&v) {
			return Err("The graph does not contain the provided vertex.".to_string());
		}
		let idv = self.vertextoid[&v];
		let mut result = 0;
		for edge in self.graph[idv].iter() {
			result += max(0, self.graph[edge.dest][edge.rev].flow);
		}
		Ok(result)
	}

	//This function returns the value of the flow outgoing from v.
	pub fn get_outflow(&self, v: Vertex) -> Result<i32, String> {
		if !self.vertextoid.contains_key(&v) {
			return Err("The graph does not contain the provided vertex.".to_string());
		}
		let idv = self.vertextoid[&v];
		let mut result = 0;
		for edge in self.graph[idv].iter() {
			result += max(0, edge.flow);
		}
		Ok(result)
	}

	//This function computes the flow total value by computing the outgoing flow
	//from the source.
	pub fn get_flow_value(&mut self) -> Result<i32, String> {
		self.get_outflow(Vertex::Source)
	}

	//This function shuffles the order of the edge lists. It keeps the ids of the
	//reversed edges consistent.
	fn shuffle_edges(&mut self) {
		let mut rng = rand::thread_rng();
		for i in 0..self.graph.len() {
			self.graph[i].shuffle(&mut rng);
			//We need to update the ids of the reverse edges.
			for j in 0..self.graph[i].len() {
				let target_v = self.graph[i][j].dest;
				let target_rev = self.graph[i][j].rev;
				self.graph[target_v][target_rev].rev = j;
			}
		}
	}

	//Computes an upper bound of the flow n the graph
	pub fn flow_upper_bound(&self) -> u32 {
		let idsource = self.vertextoid[&Vertex::Source];
		let mut flow_upper_bound = 0;
		for edge in self.graph[idsource].iter() {
			flow_upper_bound += edge.cap;
		}
		flow_upper_bound
	}

	//This function computes the maximal flow using Dinic's algorithm. It starts with
	//the flow values already present in the graph. So it is possible to add some edge to
	//the graph, compute a flow, add other edges, update the flow.
	pub fn compute_maximal_flow(&mut self) -> Result<(), String> {
		if !self.vertextoid.contains_key(&Vertex::Source) {
			return Err("The graph does not contain a source.".to_string());
		}
		if !self.vertextoid.contains_key(&Vertex::Sink) {
			return Err("The graph does not contain a sink.".to_string());
		}

		let idsource = self.vertextoid[&Vertex::Source];
		let idsink = self.vertextoid[&Vertex::Sink];

		let nb_vertices = self.graph.len();

		let flow_upper_bound = self.flow_upper_bound();

		//To ensure the dispersion of the associations generated by the
		//assignation, we shuffle the neighbours of the nodes. Hence,
		//the vertices do not consider their neighbours in the same order.
		self.shuffle_edges();

		//We run Dinic's max flow algorithm
		loop {
			//We build the level array from Dinic's algorithm.
			let mut level = vec![None; nb_vertices];

			let mut fifo = VecDeque::new();
			fifo.push_back((idsource, 0));
			while !fifo.is_empty() {
				if let Some((id, lvl)) = fifo.pop_front() {
					if level[id] == None {
						//it means id has not yet been reached
						level[id] = Some(lvl);
						for edge in self.graph[id].iter() {
							if edge.cap as i32 - edge.flow > 0 {
								fifo.push_back((edge.dest, lvl + 1));
							}
						}
					}
				}
			}
			if level[idsink] == None {
				//There is no residual flow
				break;
			}
			//Now we run DFS respecting the level array
			let mut next_nbd = vec![0; nb_vertices];
			let mut lifo = VecDeque::new();

			lifo.push_back((idsource, flow_upper_bound));

			while let Some((id_tmp, f_tmp)) = lifo.back() {
				let id = *id_tmp;
				let f = *f_tmp;
				if id == idsink {
					//The DFS reached the sink, we can add a
					//residual flow.
					lifo.pop_back();
					while let Some((id, _)) = lifo.pop_back() {
						let nbd = next_nbd[id];
						self.graph[id][nbd].flow += f as i32;
						let id_rev = self.graph[id][nbd].dest;
						let nbd_rev = self.graph[id][nbd].rev;
						self.graph[id_rev][nbd_rev].flow -= f as i32;
					}
					lifo.push_back((idsource, flow_upper_bound));
					continue;
				}
				//else we did not reach the sink
				let nbd = next_nbd[id];
				if nbd >= self.graph[id].len() {
					//There is nothing to explore from id anymore
					lifo.pop_back();
					if let Some((parent, _)) = lifo.back() {
						next_nbd[*parent] += 1;
					}
					continue;
				}
				//else we can try to send flow from id to its nbd
				let new_flow = min(
					f as i32,
					self.graph[id][nbd].cap as i32 - self.graph[id][nbd].flow,
				) as u32;
				if new_flow == 0 {
					next_nbd[id] += 1;
					continue;
				}
				if let (Some(lvldest), Some(lvlid)) = (level[self.graph[id][nbd].dest], level[id]) {
					if lvldest <= lvlid {
						//We cannot send flow to nbd.
						next_nbd[id] += 1;
						continue;
					}
				}
				//otherwise, we send flow to nbd.
				lifo.push_back((self.graph[id][nbd].dest, new_flow));
			}
		}
		Ok(())
	}

	//This function takes a flow, and a cost function on the edges, and tries to find an
	// equivalent flow with a better cost, by finding improving overflow cycles. It uses
	// as subroutine the Bellman Ford algorithm run up to path_length.
	// We assume that the cost of edge (u,v) is the opposite of the cost of (v,u), and only
	// one needs to be present in the cost function.
	pub fn optimize_flow_with_cost(
		&mut self,
		cost: &CostFunction,
		path_length: usize,
	) -> Result<(), String> {
		//We build the weighted graph g where we will look for negative cycle
		let mut gf = self.build_cost_graph(cost)?;
		let mut cycles = gf.list_negative_cycles(path_length);
		while !cycles.is_empty() {
			//we enumerate negative cycles
			for c in cycles.iter() {
				for i in 0..c.len() {
					//We add one flow unit to the edge (u,v) of cycle c
					let idu = self.vertextoid[&c[i]];
					let idv = self.vertextoid[&c[(i + 1) % c.len()]];
					for j in 0..self.graph[idu].len() {
						//since idu appears at most once in the cycles, we enumerate every
						//edge at most once.
						let edge = self.graph[idu][j];
						if edge.dest == idv {
							self.graph[idu][j].flow += 1;
							self.graph[idv][edge.rev].flow -= 1;
							break;
						}
					}
				}
			}

			gf = self.build_cost_graph(cost)?;
			cycles = gf.list_negative_cycles(path_length);
		}
		Ok(())
	}

	//Construct the weighted graph G_f from the flow and the cost function
	fn build_cost_graph(&self, cost: &CostFunction) -> Result<Graph<WeightedEdge>, String> {
		let mut g = Graph::<WeightedEdge>::new(&self.idtovertex);
		let nb_vertices = self.idtovertex.len();
		for i in 0..nb_vertices {
			for edge in self.graph[i].iter() {
				if edge.cap as i32 - edge.flow > 0 {
					//It is possible to send overflow through this edge
					let u = self.idtovertex[i];
					let v = self.idtovertex[edge.dest];
					if cost.contains_key(&(u, v)) {
						g.add_edge(u, v, cost[&(u, v)])?;
					} else if cost.contains_key(&(v, u)) {
						g.add_edge(u, v, -cost[&(v, u)])?;
					} else {
						g.add_edge(u, v, 0)?;
					}
				}
			}
		}
		Ok(g)
	}
}

impl Graph<WeightedEdge> {
	//This function adds a single directed weighted edge to the graph.
	pub fn add_edge(&mut self, u: Vertex, v: Vertex, w: i32) -> Result<(), String> {
		if !self.vertextoid.contains_key(&u) || !self.vertextoid.contains_key(&v) {
			return Err("The graph does not contain the provided vertex.".to_string());
		}
		let idu = self.vertextoid[&u];
		let idv = self.vertextoid[&v];
		self.graph[idu].push(WeightedEdge { w, dest: idv });
		Ok(())
	}

	//This function lists the negative cycles it manages to find after path_length
	//iterations of the main loop of the Bellman-Ford algorithm. For the classical
	//algorithm, path_length needs to be equal to the number of vertices. However,
	//for particular graph structures like our case, the algorithm is still correct
	//when path_length is the length of the longest possible simple path.
	//See the formal description of the algorithm for more details.
	fn list_negative_cycles(&self, path_length: usize) -> Vec<Vec<Vertex>> {
		let nb_vertices = self.graph.len();

		//We start with every vertex at distance 0 of some imaginary extra -1 vertex.
		let mut distance = vec![0; nb_vertices];
		//The prev vector collects for every vertex from where does the shortest path come
		let mut prev = vec![None; nb_vertices];

		for _ in 0..path_length + 1 {
			for id in 0..nb_vertices {
				for e in self.graph[id].iter() {
					if distance[id] + e.w < distance[e.dest] {
						distance[e.dest] = distance[id] + e.w;
						prev[e.dest] = Some(id);
					}
				}
			}
		}

		//If self.graph contains a negative cycle, then at this point the graph described
		//by prev (which is a directed 1-forest/functional graph)
		//must contain a cycle. We list the cycles of prev.
		let cycles_prev = cycles_of_1_forest(&prev);

		//Remark that the cycle in prev is in the reverse order compared to the cycle
		//in the graph. Thus the .rev().
		return cycles_prev
			.iter()
			.map(|cycle| cycle.iter().rev().map(|id| self.idtovertex[*id]).collect())
			.collect();
	}
}

//This function returns the list of cycles of a directed 1 forest. It does not
//check for the consistency of the input.
fn cycles_of_1_forest(forest: &[Option<usize>]) -> Vec<Vec<usize>> {
	let mut cycles = Vec::<Vec<usize>>::new();
	let mut time_of_discovery = vec![None; forest.len()];

	for t in 0..forest.len() {
		let mut id = t;
		//while we are on a valid undiscovered node
		while time_of_discovery[id] == None {
			time_of_discovery[id] = Some(t);
			if let Some(i) = forest[id] {
				id = i;
			} else {
				break;
			}
		}
		if forest[id] != None && time_of_discovery[id] == Some(t) {
			//We discovered an id that we explored at this iteration t.
			//It means we are on a cycle
			let mut cy = vec![id; 1];
			let mut id2 = id;
			while let Some(id_next) = forest[id2] {
				id2 = id_next;
				if id2 != id {
					cy.push(id2);
				} else {
					break;
				}
			}
			cycles.push(cy);
		}
	}
	cycles
}