use std::collections::{HashMap, VecDeque};
use std::net::SocketAddr;
use std::sync::atomic::{self, AtomicU64};
use std::sync::{Arc, RwLock};
use std::time::{Duration, Instant};
use arc_swap::ArcSwap;
use async_trait::async_trait;
use log::{debug, info, trace, warn};
use serde::{Deserialize, Serialize};
use tokio::select;
use tokio::sync::watch;
use sodiumoxide::crypto::hash;
use crate::endpoint::*;
use crate::error::*;
use crate::netapp::*;
use crate::message::*;
use crate::NodeID;
const CONN_RETRY_INTERVAL: Duration = Duration::from_secs(30);
const CONN_MAX_RETRIES: usize = 10;
const PING_INTERVAL: Duration = Duration::from_secs(15);
const LOOP_DELAY: Duration = Duration::from_secs(1);
const FAILED_PING_THRESHOLD: usize = 4;
const DEFAULT_PING_TIMEOUT_MILLIS: u64 = 10_000;
// -- Protocol messages --
#[derive(Serialize, Deserialize)]
struct PingMessage {
pub id: u64,
pub peer_list_hash: hash::Digest,
}
impl Message for PingMessage {
type Response = PingMessage;
}
#[derive(Serialize, Deserialize)]
struct PeerListMessage {
pub list: Vec<(NodeID, SocketAddr)>,
}
impl Message for PeerListMessage {
type Response = PeerListMessage;
}
// -- Algorithm data structures --
#[derive(Debug)]
struct PeerInfoInternal {
// known_addrs contains all of the addresses everyone gave us
known_addrs: Vec<SocketAddr>,
state: PeerConnState,
last_send_ping: Option<Instant>,
last_seen: Option<Instant>,
ping: VecDeque<Duration>,
failed_pings: usize,
}
impl PeerInfoInternal {
fn new(state: PeerConnState, known_addr: Option<SocketAddr>) -> Self {
Self {
known_addrs: known_addr.map(|x| vec![x]).unwrap_or_default(),
state,
last_send_ping: None,
last_seen: None,
ping: VecDeque::new(),
failed_pings: 0,
}
}
fn add_addr(&mut self, addr: SocketAddr) -> bool {
if !self.known_addrs.contains(&addr) {
self.known_addrs.push(addr);
// If we are learning a new address for this node,
// we want to retry connecting
self.state = match self.state {
PeerConnState::Trying(_) => PeerConnState::Trying(0),
PeerConnState::Waiting(_, _) | PeerConnState::Abandonned => {
PeerConnState::Waiting(0, Instant::now())
}
x @ (PeerConnState::Ourself | PeerConnState::Connected { .. }) => x,
};
true
} else {
false
}
}
}
/// Information that the full mesh peering strategy can return about the peers it knows of
#[derive(Copy, Clone, Debug)]
pub struct PeerInfo {
/// The node's identifier (its public key)
pub id: NodeID,
/// The current status of our connection to this node
pub state: PeerConnState,
/// The last time at which the node was seen
pub last_seen: Option<Instant>,
/// The average ping to this node on recent observations (if at least one ping value is known)
pub avg_ping: Option<Duration>,
/// The maximum observed ping to this node on recent observations (if at least one
/// ping value is known)
pub max_ping: Option<Duration>,
/// The median ping to this node on recent observations (if at least one ping value
/// is known)
pub med_ping: Option<Duration>,
}
impl PeerInfo {
/// Returns true if we can currently send requests to this peer
pub fn is_up(&self) -> bool {
self.state.is_up()
}
}
/// PeerConnState: possible states for our tentative connections to given peer
/// This structure is only interested in recording connection info for outgoing
/// TCP connections
#[derive(Copy, Clone, Debug, PartialEq, Eq)]
pub enum PeerConnState {
/// This entry represents ourself (the local node)
Ourself,
/// We currently have a connection to this peer
Connected { addr: SocketAddr },
/// Our next connection tentative (the nth, where n is the first value of the tuple)
/// will be at given Instant
Waiting(usize, Instant),
/// A connection tentative is in progress (the nth, where n is the value stored)
Trying(usize),
/// We abandonned trying to connect to this peer (too many failed attempts)
Abandonned,
}
impl PeerConnState {
/// Returns true if we can currently send requests to this peer
pub fn is_up(&self) -> bool {
matches!(self, Self::Ourself | Self::Connected { .. })
}
}
struct KnownHosts {
list: HashMap<NodeID, PeerInfoInternal>,
hash: hash::Digest,
}
impl KnownHosts {
fn new() -> Self {
let list = HashMap::new();
let mut ret = Self {
list,
hash: hash::Digest::from_slice(&[0u8; 64][..]).unwrap(),
};
ret.update_hash();
ret
}
fn update_hash(&mut self) {
// The hash is a value that is exchanged between nodes when they ping one
// another. Nodes compare their known hosts hash to know if they are connected
// to the same set of nodes. If the hashes differ, they are connected to
// different nodes and they trigger an exchange of the full list of active
// connections. The hash value only represents the set of node IDs and not
// their actual socket addresses, because nodes can be connected via different
// addresses and that shouldn't necessarily trigger a full peer exchange.
let mut list = self
.list
.iter()
.filter(|(_, peer)| peer.state.is_up())
.map(|(id, _)| *id)
.collect::<Vec<_>>();
list.sort();
let mut hash_state = hash::State::new();
for id in list {
hash_state.update(&id[..]);
}
self.hash = hash_state.finalize();
}
fn connected_peers_vec(&self) -> Vec<(NodeID, SocketAddr)> {
self.list
.iter()
.filter_map(|(id, peer)| match peer.state {
PeerConnState::Connected { addr } => Some((*id, addr)),
_ => None,
})
.collect::<Vec<_>>()
}
}
/// A "Full Mesh" peering strategy is a peering strategy that tries
/// to establish and maintain a direct connection with all of the
/// known nodes in the network.
pub struct PeeringManager {
netapp: Arc<NetApp>,
known_hosts: RwLock<KnownHosts>,
public_peer_list: ArcSwap<Vec<PeerInfo>>,
next_ping_id: AtomicU64,
ping_endpoint: Arc<Endpoint<PingMessage, Self>>,
peer_list_endpoint: Arc<Endpoint<PeerListMessage, Self>>,
ping_timeout_millis: AtomicU64,
}
impl PeeringManager {
/// Create a new Full Mesh peering strategy.
/// The strategy will not be run until `.run()` is called and awaited.
/// Once that happens, the peering strategy will try to connect
/// to all of the nodes specified in the bootstrap list.
pub fn new(
netapp: Arc<NetApp>,
bootstrap_list: Vec<(NodeID, SocketAddr)>,
our_addr: Option<SocketAddr>,
) -> Arc<Self> {
let mut known_hosts = KnownHosts::new();
for (id, addr) in bootstrap_list {
if id != netapp.id {
known_hosts.list.insert(
id,
PeerInfoInternal::new(PeerConnState::Waiting(0, Instant::now()), Some(addr)),
);
}
}
known_hosts.list.insert(
netapp.id,
PeerInfoInternal::new(PeerConnState::Ourself, our_addr),
);
known_hosts.update_hash();
// TODO for v0.10 / v1.0 : rename the endpoint (it will break compatibility)
let strat = Arc::new(Self {
netapp: netapp.clone(),
known_hosts: RwLock::new(known_hosts),
public_peer_list: ArcSwap::new(Arc::new(Vec::new())),
next_ping_id: AtomicU64::new(42),
ping_endpoint: netapp.endpoint("__netapp/peering/fullmesh.rs/Ping".into()),
peer_list_endpoint: netapp.endpoint("__netapp/peering/fullmesh.rs/PeerList".into()),
ping_timeout_millis: DEFAULT_PING_TIMEOUT_MILLIS.into(),
});
strat.update_public_peer_list(&strat.known_hosts.read().unwrap());
strat.ping_endpoint.set_handler(strat.clone());
strat.peer_list_endpoint.set_handler(strat.clone());
let strat2 = strat.clone();
netapp.on_connected(move |id: NodeID, addr: SocketAddr, is_incoming: bool| {
strat2.on_connected(id, addr, is_incoming);
});
let strat2 = strat.clone();
netapp.on_disconnected(move |id: NodeID, is_incoming: bool| {
strat2.on_disconnected(id, is_incoming);
});
strat
}
/// Run the full mesh peering strategy.
/// This future exits when the `must_exit` watch becomes true.
pub async fn run(self: Arc<Self>, must_exit: watch::Receiver<bool>) {
while !*must_exit.borrow() {
// 1. Read current state: get list of connected peers (ping them)
let (to_ping, to_retry) = {
let known_hosts = self.known_hosts.read().unwrap();
trace!("known_hosts: {} peers", known_hosts.list.len());
let mut to_ping = vec![];
let mut to_retry = vec![];
for (id, info) in known_hosts.list.iter() {
trace!("{}, {:?}", hex::encode(&id[..8]), info);
match info.state {
PeerConnState::Connected { .. } => {
let must_ping = match info.last_send_ping {
None => true,
Some(t) => Instant::now() - t > PING_INTERVAL,
};
if must_ping {
to_ping.push(*id);
}
}
PeerConnState::Waiting(_, t) => {
if Instant::now() >= t {
to_retry.push(*id);
}
}
_ => (),
}
}
(to_ping, to_retry)
};
// 2. Dispatch ping to hosts
trace!("to_ping: {} peers", to_ping.len());
if !to_ping.is_empty() {
let mut known_hosts = self.known_hosts.write().unwrap();
for id in to_ping.iter() {
known_hosts.list.get_mut(id).unwrap().last_send_ping = Some(Instant::now());
}
drop(known_hosts);
for id in to_ping {
tokio::spawn(self.clone().ping(id));
}
}
// 3. Try reconnects
trace!("to_retry: {} peers", to_retry.len());
if !to_retry.is_empty() {
let mut known_hosts = self.known_hosts.write().unwrap();
for id in to_retry {
if let Some(h) = known_hosts.list.get_mut(&id) {
if let PeerConnState::Waiting(i, _) = h.state {
info!(
"Retrying connection to {} at {} ({})",
hex::encode(&id[..8]),
h.known_addrs
.iter()
.map(|x| format!("{}", x))
.collect::<Vec<_>>()
.join(", "),
i + 1
);
h.state = PeerConnState::Trying(i);
let addresses = h.known_addrs.clone();
tokio::spawn(self.clone().try_connect(id, addresses));
}
}
}
self.update_public_peer_list(&known_hosts);
}
// 4. Sleep before next loop iteration
tokio::time::sleep(LOOP_DELAY).await;
}
}
/// Returns a list of currently known peers in the network.
pub fn get_peer_list(&self) -> Arc<Vec<PeerInfo>> {
self.public_peer_list.load_full()
}
/// Set the timeout for ping messages, in milliseconds
pub fn set_ping_timeout_millis(&self, timeout: u64) {
self.ping_timeout_millis
.store(timeout, atomic::Ordering::Relaxed);
}
// -- internal stuff --
fn update_public_peer_list(&self, known_hosts: &KnownHosts) {
let mut pub_peer_list = Vec::with_capacity(known_hosts.list.len());
for (id, info) in known_hosts.list.iter() {
if *id == self.netapp.id {
// sanity check
assert!(matches!(info.state, PeerConnState::Ourself));
}
let mut pings = info.ping.iter().cloned().collect::<Vec<_>>();
pings.sort();
if !pings.is_empty() {
pub_peer_list.push(PeerInfo {
id: *id,
state: info.state,
last_seen: info.last_seen,
avg_ping: Some(pings.iter().sum::<Duration>().div_f64(pings.len() as f64)),
max_ping: pings.last().cloned(),
med_ping: Some(pings[pings.len() / 2]),
});
} else {
pub_peer_list.push(PeerInfo {
id: *id,
state: info.state,
last_seen: info.last_seen,
avg_ping: None,
max_ping: None,
med_ping: None,
});
}
}
self.public_peer_list.store(Arc::new(pub_peer_list));
}
async fn ping(self: Arc<Self>, id: NodeID) {
let peer_list_hash = self.known_hosts.read().unwrap().hash;
let ping_id = self.next_ping_id.fetch_add(1u64, atomic::Ordering::Relaxed);
let ping_time = Instant::now();
let ping_timeout =
Duration::from_millis(self.ping_timeout_millis.load(atomic::Ordering::Relaxed));
let ping_msg = PingMessage {
id: ping_id,
peer_list_hash,
};
debug!(
"Sending ping {} to {} at {:?}",
ping_id,
hex::encode(&id[..8]),
ping_time
);
let ping_response = select! {
r = self.ping_endpoint.call(&id, ping_msg, PRIO_HIGH) => r,
_ = tokio::time::sleep(ping_timeout) => Err(Error::Message("Ping timeout".into())),
};
match ping_response {
Err(e) => {
warn!("Error pinging {}: {}", hex::encode(&id[..8]), e);
let mut known_hosts = self.known_hosts.write().unwrap();
if let Some(host) = known_hosts.list.get_mut(&id) {
host.failed_pings += 1;
if host.failed_pings > FAILED_PING_THRESHOLD {
warn!(
"Too many failed pings from {}, closing connection.",
hex::encode(&id[..8])
);
// this will later update info in known_hosts
// through the disconnection handler
self.netapp.disconnect(&id);
}
}
}
Ok(ping_resp) => {
let resp_time = Instant::now();
debug!(
"Got ping response from {} at {:?}",
hex::encode(&id[..8]),
resp_time
);
{
let mut known_hosts = self.known_hosts.write().unwrap();
if let Some(host) = known_hosts.list.get_mut(&id) {
host.failed_pings = 0;
host.last_seen = Some(resp_time);
host.ping.push_back(resp_time - ping_time);
while host.ping.len() > 10 {
host.ping.pop_front();
}
self.update_public_peer_list(&known_hosts);
}
}
if ping_resp.peer_list_hash != peer_list_hash {
self.exchange_peers(&id).await;
}
}
}
}
async fn exchange_peers(self: Arc<Self>, id: &NodeID) {
let peer_list = self.known_hosts.read().unwrap().connected_peers_vec();
let pex_message = PeerListMessage { list: peer_list };
match self
.peer_list_endpoint
.call(id, pex_message, PRIO_BACKGROUND)
.await
{
Err(e) => warn!("Error doing peer exchange: {}", e),
Ok(resp) => {
self.handle_peer_list(&resp.list[..]);
}
}
}
fn handle_peer_list(&self, list: &[(NodeID, SocketAddr)]) {
let mut known_hosts = self.known_hosts.write().unwrap();
let mut changed = false;
for (id, addr) in list.iter() {
if let Some(kh) = known_hosts.list.get_mut(id) {
if kh.add_addr(*addr) {
changed = true;
}
} else {
known_hosts.list.insert(*id, self.new_peer(id, *addr));
changed = true;
}
}
if changed {
known_hosts.update_hash();
self.update_public_peer_list(&known_hosts);
}
}
async fn try_connect(self: Arc<Self>, id: NodeID, addresses: Vec<SocketAddr>) {
let conn_addr = {
let mut ret = None;
for addr in addresses.iter() {
debug!("Trying address {} for peer {}", addr, hex::encode(&id[..8]));
match self.netapp.clone().try_connect(*addr, id).await {
Ok(()) => {
ret = Some(*addr);
break;
}
Err(e) => {
debug!(
"Error connecting to {} at {}: {}",
hex::encode(&id[..8]),
addr,
e
);
}
}
}
ret
};
if let Some(ok_addr) = conn_addr {
self.on_connected(id, ok_addr, false);
} else {
warn!(
"Could not connect to peer {} ({} addresses tried)",
hex::encode(&id[..8]),
addresses.len()
);
let mut known_hosts = self.known_hosts.write().unwrap();
if let Some(host) = known_hosts.list.get_mut(&id) {
host.state = match host.state {
PeerConnState::Trying(i) => {
if i >= CONN_MAX_RETRIES {
PeerConnState::Abandonned
} else {
PeerConnState::Waiting(i + 1, Instant::now() + CONN_RETRY_INTERVAL)
}
}
_ => PeerConnState::Waiting(0, Instant::now() + CONN_RETRY_INTERVAL),
};
self.update_public_peer_list(&known_hosts);
}
}
}
fn on_connected(self: &Arc<Self>, id: NodeID, addr: SocketAddr, is_incoming: bool) {
if id == self.netapp.id {
// sanity check
panic!(
"on_connected from local node, id={:?}, addr={}, incoming={}",
id, addr, is_incoming
);
}
let mut known_hosts = self.known_hosts.write().unwrap();
if is_incoming {
if let Some(host) = known_hosts.list.get_mut(&id) {
host.add_addr(addr);
} else {
known_hosts.list.insert(id, self.new_peer(&id, addr));
}
} else {
info!(
"Successfully connected to {} at {}",
hex::encode(&id[..8]),
addr
);
if let Some(host) = known_hosts.list.get_mut(&id) {
host.state = PeerConnState::Connected { addr };
host.add_addr(addr);
} else {
known_hosts.list.insert(
id,
PeerInfoInternal::new(PeerConnState::Connected { addr }, Some(addr)),
);
}
}
known_hosts.update_hash();
self.update_public_peer_list(&known_hosts);
}
fn on_disconnected(self: &Arc<Self>, id: NodeID, is_incoming: bool) {
if !is_incoming {
info!("Connection to {} was closed", hex::encode(&id[..8]));
let mut known_hosts = self.known_hosts.write().unwrap();
if let Some(host) = known_hosts.list.get_mut(&id) {
host.state = PeerConnState::Waiting(0, Instant::now());
known_hosts.update_hash();
self.update_public_peer_list(&known_hosts);
}
}
}
fn new_peer(&self, id: &NodeID, addr: SocketAddr) -> PeerInfoInternal {
assert!(*id != self.netapp.id);
PeerInfoInternal::new(PeerConnState::Waiting(0, Instant::now()), Some(addr))
}
}
#[async_trait]
impl EndpointHandler<PingMessage> for PeeringManager {
async fn handle(self: &Arc<Self>, ping: &PingMessage, from: NodeID) -> PingMessage {
let ping_resp = PingMessage {
id: ping.id,
peer_list_hash: self.known_hosts.read().unwrap().hash,
};
debug!("Ping from {}", hex::encode(&from[..8]));
ping_resp
}
}
#[async_trait]
impl EndpointHandler<PeerListMessage> for PeeringManager {
async fn handle(
self: &Arc<Self>,
peer_list: &PeerListMessage,
_from: NodeID,
) -> PeerListMessage {
self.handle_peer_list(&peer_list.list[..]);
let peer_list = self.known_hosts.read().unwrap().connected_peers_vec();
PeerListMessage { list: peer_list }
}
}