//! Module that implements RPCs specific to K2V.
//! This is necessary for insertions into the K2V store,
//! as they have to be transmitted to one of the nodes responsible
//! for storing the entry to be processed (the API entry
//! node does not process the entry directly, as this would
//! mean the vector clock gets much larger than needed).
use std::collections::{BTreeMap, HashMap};
use std::convert::TryInto;
use std::sync::{Arc, Mutex, MutexGuard};
use std::time::{Duration, Instant};
use async_trait::async_trait;
use futures::stream::FuturesUnordered;
use futures::StreamExt;
use serde::{Deserialize, Serialize};
use tokio::select;
use garage_db as db;
use garage_util::crdt::*;
use garage_util::data::*;
use garage_util::error::*;
use garage_util::time::now_msec;
use garage_rpc::system::System;
use garage_rpc::*;
use garage_table::replication::{TableReplication, TableShardedReplication};
use garage_table::{PartitionKey, Table};
use crate::helper::error::Error as HelperError;
use crate::k2v::causality::*;
use crate::k2v::item_table::*;
use crate::k2v::seen::*;
use crate::k2v::sub::*;
const POLL_RANGE_EXTRA_DELAY: Duration = Duration::from_millis(200);
const TIMESTAMP_KEY: &[u8] = b"timestamp";
/// RPC messages for K2V
#[derive(Debug, Serialize, Deserialize)]
enum K2VRpc {
Ok,
InsertItem(InsertedItem),
InsertManyItems(Vec<InsertedItem>),
PollItem {
key: PollKey,
causal_context: CausalContext,
timeout_msec: u64,
},
PollRange {
range: PollRange,
seen_str: Option<String>,
timeout_msec: u64,
},
PollItemResponse(Option<K2VItem>),
PollRangeResponse(Uuid, Vec<K2VItem>),
}
#[derive(Debug, Serialize, Deserialize)]
struct InsertedItem {
partition: K2VItemPartition,
sort_key: String,
causal_context: Option<CausalContext>,
value: DvvsValue,
}
impl Rpc for K2VRpc {
type Response = Result<K2VRpc, Error>;
}
/// The block manager, handling block exchange between nodes, and block storage on local node
pub struct K2VRpcHandler {
system: Arc<System>,
item_table: Arc<Table<K2VItemTable, TableShardedReplication>>,
// Using a mutex on the local_timestamp_tree is not strictly necessary,
// but it helps to not try to do several inserts at the same time,
// which would create transaction conflicts and force many useless retries.
local_timestamp_tree: Mutex<db::Tree>,
endpoint: Arc<Endpoint<K2VRpc, Self>>,
subscriptions: Arc<SubscriptionManager>,
}
impl K2VRpcHandler {
pub fn new(
system: Arc<System>,
db: &db::Db,
item_table: Arc<Table<K2VItemTable, TableShardedReplication>>,
subscriptions: Arc<SubscriptionManager>,
) -> Arc<Self> {
let local_timestamp_tree = db
.open_tree("k2v_local_timestamp")
.expect("Unable to open DB tree for k2v local timestamp");
let endpoint = system.netapp.endpoint("garage_model/k2v/Rpc".to_string());
let rpc_handler = Arc::new(Self {
system,
item_table,
local_timestamp_tree: Mutex::new(local_timestamp_tree),
endpoint,
subscriptions,
});
rpc_handler.endpoint.set_handler(rpc_handler.clone());
rpc_handler
}
// ---- public interface ----
pub async fn insert(
&self,
bucket_id: Uuid,
partition_key: String,
sort_key: String,
causal_context: Option<CausalContext>,
value: DvvsValue,
) -> Result<(), Error> {
let partition = K2VItemPartition {
bucket_id,
partition_key,
};
let mut who = self
.item_table
.data
.replication
.write_nodes(&partition.hash());
who.sort();
self.system
.rpc
.try_call_many(
&self.endpoint,
&who[..],
K2VRpc::InsertItem(InsertedItem {
partition,
sort_key,
causal_context,
value,
}),
RequestStrategy::with_priority(PRIO_NORMAL)
.with_quorum(1)
.interrupt_after_quorum(true),
)
.await?;
Ok(())
}
pub async fn insert_batch(
&self,
bucket_id: Uuid,
items: Vec<(String, String, Option<CausalContext>, DvvsValue)>,
) -> Result<(), Error> {
let n_items = items.len();
let mut call_list: HashMap<_, Vec<_>> = HashMap::new();
for (partition_key, sort_key, causal_context, value) in items {
let partition = K2VItemPartition {
bucket_id,
partition_key,
};
let mut who = self
.item_table
.data
.replication
.write_nodes(&partition.hash());
who.sort();
call_list.entry(who).or_default().push(InsertedItem {
partition,
sort_key,
causal_context,
value,
});
}
debug!(
"K2V insert_batch: {} requests to insert {} items",
call_list.len(),
n_items
);
let call_futures = call_list.into_iter().map(|(nodes, items)| async move {
let resp = self
.system
.rpc
.try_call_many(
&self.endpoint,
&nodes[..],
K2VRpc::InsertManyItems(items),
RequestStrategy::with_priority(PRIO_NORMAL)
.with_quorum(1)
.interrupt_after_quorum(true),
)
.await?;
Ok::<_, Error>((nodes, resp))
});
let mut resps = call_futures.collect::<FuturesUnordered<_>>();
while let Some(resp) = resps.next().await {
resp?;
}
Ok(())
}
pub async fn poll_item(
&self,
bucket_id: Uuid,
partition_key: String,
sort_key: String,
causal_context: CausalContext,
timeout_msec: u64,
) -> Result<Option<K2VItem>, Error> {
let poll_key = PollKey {
partition: K2VItemPartition {
bucket_id,
partition_key,
},
sort_key,
};
let nodes = self
.item_table
.data
.replication
.write_nodes(&poll_key.partition.hash());
let rpc = self.system.rpc.try_call_many(
&self.endpoint,
&nodes[..],
K2VRpc::PollItem {
key: poll_key,
causal_context,
timeout_msec,
},
RequestStrategy::with_priority(PRIO_NORMAL)
.with_quorum(self.item_table.data.replication.read_quorum())
.without_timeout(),
);
let timeout_duration = Duration::from_millis(timeout_msec) + self.system.rpc.rpc_timeout();
let resps = select! {
r = rpc => r?,
_ = tokio::time::sleep(timeout_duration) => return Ok(None),
};
let mut resp: Option<K2VItem> = None;
for v in resps {
match v {
K2VRpc::PollItemResponse(Some(x)) => {
if let Some(y) = &mut resp {
y.merge(&x);
} else {
resp = Some(x);
}
}
K2VRpc::PollItemResponse(None) => (),
v => return Err(Error::unexpected_rpc_message(v)),
}
}
Ok(resp)
}
pub async fn poll_range(
&self,
range: PollRange,
seen_str: Option<String>,
timeout_msec: u64,
) -> Result<Option<(BTreeMap<String, K2VItem>, String)>, HelperError> {
let has_seen_marker = seen_str.is_some();
// Parse seen marker, we will use it below. This is also the first check
// that it is valid, which returns a bad request error if not.
let mut seen = seen_str
.as_deref()
.map(RangeSeenMarker::decode_helper)
.transpose()?
.unwrap_or_default();
seen.restrict(&range);
// Prepare PollRange RPC to send to the storage nodes responsible for the parititon
let nodes = self
.item_table
.data
.replication
.write_nodes(&range.partition.hash());
let quorum = self.item_table.data.replication.read_quorum();
let msg = K2VRpc::PollRange {
range,
seen_str,
timeout_msec,
};
// Send the request to all nodes, use FuturesUnordered to get the responses in any order
let msg = msg.into_req().map_err(netapp::error::Error::from)?;
let rs = RequestStrategy::with_priority(PRIO_NORMAL).without_timeout();
let mut requests = nodes
.iter()
.map(|node| self.system.rpc.call(&self.endpoint, *node, msg.clone(), rs))
.collect::<FuturesUnordered<_>>();
// Fetch responses. This procedure stops fetching responses when any of the following
// conditions arise:
// - we have a response to all requests
// - we have a response to a read quorum of requests (e.g. 2/3), and an extra delay
// has passed since the quorum was achieved
// - a global RPC timeout expired
// The extra delay after a quorum was received is usefull if the third response was to
// arrive during this short interval: this would allow us to consider all the data seen
// by that last node in the response we produce, and would likely help reduce the
// size of the seen marker that we will return (because we would have an info of the
// kind: all items produced by that node until time ts have been returned, so we can
// bump the entry in the global vector clock and possibly remove some item-specific
// vector clocks)
let mut deadline =
Instant::now() + Duration::from_millis(timeout_msec) + self.system.rpc.rpc_timeout();
let mut resps = vec![];
let mut errors = vec![];
loop {
select! {
_ = tokio::time::sleep_until(deadline.into()) => {
break;
}
res = requests.next() => match res {
None => break,
Some(Err(e)) => errors.push(e),
Some(Ok(r)) => {
resps.push(r);
if resps.len() >= quorum {
deadline = std::cmp::min(deadline, Instant::now() + POLL_RANGE_EXTRA_DELAY);
}
}
}
}
}
if errors.len() > nodes.len() - quorum {
let errors = errors.iter().map(|e| format!("{}", e)).collect::<Vec<_>>();
return Err(Error::Quorum(quorum, resps.len(), nodes.len(), errors).into());
}
// Take all returned items into account to produce the response.
let mut new_items = BTreeMap::<String, K2VItem>::new();
for v in resps {
if let K2VRpc::PollRangeResponse(node, items) = v {
seen.mark_seen_node_items(node, items.iter());
for item in items.into_iter() {
match new_items.get_mut(&item.sort_key) {
Some(ent) => {
ent.merge(&item);
}
None => {
new_items.insert(item.sort_key.clone(), item);
}
}
}
} else {
return Err(Error::unexpected_rpc_message(v).into());
}
}
if new_items.is_empty() && has_seen_marker {
Ok(None)
} else {
Ok(Some((new_items, seen.encode()?)))
}
}
// ---- internal handlers ----
async fn handle_insert(&self, item: &InsertedItem) -> Result<K2VRpc, Error> {
let new = {
let local_timestamp_tree = self.local_timestamp_tree.lock().unwrap();
self.local_insert(&local_timestamp_tree, item)?
};
// Propagate to rest of network
if let Some(updated) = new {
self.item_table.insert(&updated).await?;
}
Ok(K2VRpc::Ok)
}
async fn handle_insert_many(&self, items: &[InsertedItem]) -> Result<K2VRpc, Error> {
let mut updated_vec = vec![];
{
let local_timestamp_tree = self.local_timestamp_tree.lock().unwrap();
for item in items {
let new = self.local_insert(&local_timestamp_tree, item)?;
if let Some(updated) = new {
updated_vec.push(updated);
}
}
}
// Propagate to rest of network
if !updated_vec.is_empty() {
self.item_table.insert_many(&updated_vec).await?;
}
Ok(K2VRpc::Ok)
}
fn local_insert(
&self,
local_timestamp_tree: &MutexGuard<'_, db::Tree>,
item: &InsertedItem,
) -> Result<Option<K2VItem>, Error> {
let now = now_msec();
self.item_table
.data
.update_entry_with(&item.partition, &item.sort_key, |tx, ent| {
let old_local_timestamp = tx
.get(local_timestamp_tree, TIMESTAMP_KEY)?
.and_then(|x| x.try_into().ok())
.map(u64::from_be_bytes)
.unwrap_or_default();
let mut ent = ent.unwrap_or_else(|| {
K2VItem::new(
item.partition.bucket_id,
item.partition.partition_key.clone(),
item.sort_key.clone(),
)
});
let new_local_timestamp = ent.update(
self.system.id,
&item.causal_context,
item.value.clone(),
std::cmp::max(old_local_timestamp, now),
);
tx.insert(
local_timestamp_tree,
TIMESTAMP_KEY,
u64::to_be_bytes(new_local_timestamp),
)?;
Ok(ent)
})
}
async fn handle_poll_item(&self, key: &PollKey, ct: &CausalContext) -> Result<K2VItem, Error> {
let mut chan = self.subscriptions.subscribe_item(key);
let mut value = self
.item_table
.data
.read_entry(&key.partition, &key.sort_key)?
.map(|bytes| self.item_table.data.decode_entry(&bytes[..]))
.transpose()?
.unwrap_or_else(|| {
K2VItem::new(
key.partition.bucket_id,
key.partition.partition_key.clone(),
key.sort_key.clone(),
)
});
while !value.causal_context().is_newer_than(ct) {
value = chan.recv().await?;
}
Ok(value)
}
async fn handle_poll_range(
&self,
range: &PollRange,
seen_str: &Option<String>,
) -> Result<Vec<K2VItem>, Error> {
if let Some(seen_str) = seen_str {
let seen = RangeSeenMarker::decode(seen_str).ok_or_message("Invalid seenMarker")?;
// Subscribe now to all changes on that partition,
// so that new items that are inserted while we are reading the range
// will be seen in the loop below
let mut chan = self.subscriptions.subscribe_partition(&range.partition);
// Check for the presence of any new items already stored in the item table
let mut new_items = self.poll_range_read_range(range, &seen)?;
// If we found no new items, wait for a matching item to arrive
// on the channel
while new_items.is_empty() {
let item = chan.recv().await?;
if range.matches(&item) && seen.is_new_item(&item) {
new_items.push(item);
}
}
Ok(new_items)
} else {
// If no seen marker was specified, we do not poll for anything.
// We return immediately with the set of known items (even if
// it is empty), which will give the client an inital view of
// the dataset and an initial seen marker for further
// PollRange calls.
self.poll_range_read_range(range, &RangeSeenMarker::default())
}
}
fn poll_range_read_range(
&self,
range: &PollRange,
seen: &RangeSeenMarker,
) -> Result<Vec<K2VItem>, Error> {
let mut new_items = vec![];
let partition_hash = range.partition.hash();
let first_key = match &range.start {
None => partition_hash.to_vec(),
Some(sk) => self.item_table.data.tree_key(&range.partition, sk),
};
for item in self.item_table.data.store.range(first_key..)? {
let (key, value) = item?;
if &key[..32] != partition_hash.as_slice() {
break;
}
let item = self.item_table.data.decode_entry(&value)?;
if !range.matches(&item) {
break;
}
if seen.is_new_item(&item) {
new_items.push(item);
}
}
Ok(new_items)
}
}
#[async_trait]
impl EndpointHandler<K2VRpc> for K2VRpcHandler {
async fn handle(self: &Arc<Self>, message: &K2VRpc, _from: NodeID) -> Result<K2VRpc, Error> {
match message {
K2VRpc::InsertItem(item) => self.handle_insert(item).await,
K2VRpc::InsertManyItems(items) => self.handle_insert_many(&items[..]).await,
K2VRpc::PollItem {
key,
causal_context,
timeout_msec,
} => {
let delay = tokio::time::sleep(Duration::from_millis(*timeout_msec));
select! {
ret = self.handle_poll_item(key, causal_context) => ret.map(Some).map(K2VRpc::PollItemResponse),
_ = delay => Ok(K2VRpc::PollItemResponse(None)),
}
}
K2VRpc::PollRange {
range,
seen_str,
timeout_msec,
} => {
let delay = tokio::time::sleep(Duration::from_millis(*timeout_msec));
select! {
ret = self.handle_poll_range(range, seen_str) => ret.map(|items| K2VRpc::PollRangeResponse(self.system.id, items)),
_ = delay => Ok(K2VRpc::PollRangeResponse(self.system.id, vec![])),
}
}
m => Err(Error::unexpected_rpc_message(m)),
}
}
}