package message
// Below code is largely inspired from the standard golang library encoding/asn
// If put BEGIN / END tags in the comments to give the original library name
import (
// "errors"
"fmt"
"math/big"
// "strconv"
// "time"
)
//
// BEGIN: encoding/asn1/common.go
//
// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
const (
tagBoolean = 1
tagInteger = 2
// tagBitString = 3
tagOctetString = 4
// tagOID = 6
tagEnum = 10
// tagUTF8String = 12
tagSequence = 16
tagSet = 17
// tagPrintableString = 19
// tagT61String = 20
// tagIA5String = 22
// tagUTCTime = 23
// tagGeneralizedTime = 24
tagGeneralString = 27
)
var tagNames = map[int]string{
tagBoolean: "BOOLEAN",
tagInteger: "INTEGER",
tagOctetString: "OCTET STRING",
tagEnum: "ENUM",
tagSequence: "SEQUENCE",
tagSet: "SET",
}
const (
classUniversal = 0
classApplication = 1
classContextSpecific = 2
// classPrivate = 3
)
var classNames = map[int]string{
classUniversal: "UNIVERSAL",
classApplication: "APPLICATION",
classContextSpecific: "CONTEXT SPECIFIC",
}
const (
isCompound = true
isNotCompound = false
)
var compoundNames = map[bool]string{
isCompound: "COMPOUND",
isNotCompound: "NOT COMPOUND",
}
type TagAndLength struct {
Class, Tag, Length int
IsCompound bool
}
//
// END: encoding/asn1/common.go
//
func (t *TagAndLength) Expect(class int, tag int, isCompound bool) (err error) {
err = t.ExpectClass(class)
if err != nil {
return LdapError{fmt.Sprintf("Expect: %s.", err)}
}
err = t.ExpectTag(tag)
if err != nil {
return LdapError{fmt.Sprintf("Expect: %s.", err)}
}
err = t.ExpectCompound(isCompound)
if err != nil {
return LdapError{fmt.Sprintf("Expect: %s.", err)}
}
return
}
func (t *TagAndLength) ExpectClass(class int) (err error) {
if class != t.Class {
err = SyntaxError{fmt.Sprintf("ExpectClass: wrong tag class: got %d (%s), expected %d (%s)", t.Class, classNames[t.Class], class, classNames[class])}
}
return
}
func (t *TagAndLength) ExpectTag(tag int) (err error) {
if tag != t.Tag {
err = SyntaxError{fmt.Sprintf("ExpectTag: wrong tag value: got %d (%s), expected %d (%s)", t.Tag, tagNames[t.Tag], tag, tagNames[tag])}
}
return
}
func (t *TagAndLength) ExpectCompound(isCompound bool) (err error) {
if isCompound != t.IsCompound {
err = SyntaxError{fmt.Sprintf("ExpectCompound: wrong tag compound: got %t (%s), expected %t (%s)", t.IsCompound, compoundNames[t.IsCompound], isCompound, compoundNames[isCompound])}
}
return
}
func ParseTagAndLength(bytes []byte, initOffset int) (ret TagAndLength, offset int, err error) {
ret, offset, err = parseTagAndLength(bytes, initOffset)
return
}
//
// BEGIN encoding/asn1/asn1.go
//
// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Package asn1 implements parsing of DER-encoded ASN.1 data structures,
// as defined in ITU-T Rec X.690.
//
// See also ``A Layman's Guide to a Subset of ASN.1, BER, and DER,''
// http://luca.ntop.org/Teaching/Appunti/asn1.html.
// package asn1
// ASN.1 is a syntax for specifying abstract objects and BER, DER, PER, XER etc
// are different encoding formats for those objects. Here, we'll be dealing
// with DER, the Distinguished Encoding Rules. DER is used in X.509 because
// it's fast to parse and, unlike BER, has a unique encoding for every object.
// When calculating hashes over objects, it's important that the resulting
// bytes be the same at both ends and DER removes this margin of error.
//
// ASN.1 is very complex and this package doesn't attempt to implement
// everything by any means.
//import (
// "fmt"
// "math/big"
// "reflect"
// "strconv"
// "time"
//)
// A StructuralError suggests that the ASN.1 data is valid, but the Go type
// which is receiving it doesn't match.
type StructuralError struct {
Msg string
}
func (e StructuralError) Error() string { return "asn1: structure error: " + e.Msg }
// A SyntaxError suggests that the ASN.1 data is invalid.
type SyntaxError struct {
Msg string
}
func (e SyntaxError) Error() string { return "asn1: syntax error: " + e.Msg }
// We start by dealing with each of the primitive types in turn.
// BOOLEAN
func parseBool(bytes []byte) (ret bool, err error) {
if len(bytes) > 1 {
err = SyntaxError{"invalid boolean: should be encoded on one byte only"}
return
} else if len(bytes) == 0 {
err = SyntaxError{"invalid boolean: no data to read"}
}
// DER demands that "If the encoding represents the boolean value TRUE,
// its single contents octet shall have all eight bits set to one."
// Thus only 0 and 255 are valid encoded values.
switch bytes[0] {
case 0:
ret = false
case 0xff:
ret = true
default:
err = SyntaxError{"invalid boolean: should be 0x00 of 0xFF"}
}
return
}
func sizeBool(b bool) int {
return 1
}
func writeBool(bytes *Bytes, b bool) int {
if b == false {
return bytes.writeBytes([]byte{0x00})
} else {
return bytes.writeBytes([]byte{0xff})
}
}
// INTEGER
// parseInt64 treats the given bytes as a big-endian, signed integer and
// returns the result.
func parseInt64(bytes []byte) (ret int64, err error) {
if len(bytes) > 8 {
// We'll overflow an int64 in this case.
err = StructuralError{"integer too large"}
return
}
for bytesRead := 0; bytesRead < len(bytes); bytesRead++ {
ret <<= 8
ret |= int64(bytes[bytesRead])
}
// Shift up and down in order to sign extend the result.
ret <<= 64 - uint8(len(bytes))*8
ret >>= 64 - uint8(len(bytes))*8
return
}
func sizeInt64(i int64) int {
n := 1
for i > 127 {
n++
i >>= 8
}
for i < -128 {
n++
i >>= 8
}
return n
}
func writeInt64(bytes *Bytes, i int64) int {
n := sizeInt64(i)
buf := [8]byte{}
for j := 0; j < n; j++ {
b := i >> uint((n-1-j)*8)
buf[j] = byte(b)
}
bytes.writeBytes(buf[:n])
return n
}
// parseInt treats the given bytes as a big-endian, signed integer and returns
// the result.
func parseInt32(bytes []byte) (int32, error) {
ret64, err := parseInt64(bytes)
if err != nil {
return 0, err
}
if ret64 != int64(int32(ret64)) {
return 0, StructuralError{"integer too large"}
}
return int32(ret64), nil
}
func sizeInt32(i int32) int {
return sizeInt64(int64(i))
}
func writeInt32(bytes *Bytes, i int32) int {
return writeInt64(bytes, int64(i))
}
var bigOne = big.NewInt(1)
// // parseBigInt treats the given bytes as a big-endian, signed integer and returns
// // the result.
// func parseBigInt(bytes []byte) *big.Int {
// ret := new(big.Int)
// if len(bytes) > 0 && bytes[0]&0x80 == 0x80 {
// // This is a negative number.
// notBytes := make([]byte, len(bytes))
// for i := range notBytes {
// notBytes[i] = ^bytes[i]
// }
// ret.SetBytes(notBytes)
// ret.Add(ret, bigOne)
// ret.Neg(ret)
// return ret
// }
// ret.SetBytes(bytes)
// return ret
// }
// // BIT STRING
// // BitString is the structure to use when you want an ASN.1 BIT STRING type. A
// // bit string is padded up to the nearest byte in memory and the number of
// // valid bits is recorded. Padding bits will be zero.
// type BitString struct {
// Bytes []byte // bits packed into bytes.
// BitLength int // length in bits.
// }
// // At returns the bit at the given index. If the index is out of range it
// // returns false.
// func (b BitString) At(i int) int {
// if i < 0 || i >= b.BitLength {
// return 0
// }
// x := i / 8
// y := 7 - uint(i%8)
// return int(b.Bytes[x]>>y) & 1
// }
// // RightAlign returns a slice where the padding bits are at the beginning. The
// // slice may share memory with the BitString.
// func (b BitString) RightAlign() []byte {
// shift := uint(8 - (b.BitLength % 8))
// if shift == 8 || len(b.Bytes) == 0 {
// return b.Bytes
// }
// a := make([]byte, len(b.Bytes))
// a[0] = b.Bytes[0] >> shift
// for i := 1; i < len(b.Bytes); i++ {
// a[i] = b.Bytes[i-1] << (8 - shift)
// a[i] |= b.Bytes[i] >> shift
// }
// return a
// }
// // parseBitString parses an ASN.1 bit string from the given byte slice and returns it.
// func parseBitString(bytes []byte) (ret BitString, err error) {
// if len(bytes) == 0 {
// err = SyntaxError{"zero length BIT STRING"}
// return
// }
// paddingBits := int(bytes[0])
// if paddingBits > 7 ||
// len(bytes) == 1 && paddingBits > 0 ||
// bytes[len(bytes)-1]&((1<<bytes[0])-1) != 0 {
// err = SyntaxError{"invalid padding bits in BIT STRING"}
// return
// }
// ret.BitLength = (len(bytes)-1)*8 - paddingBits
// ret.Bytes = bytes[1:]
// return
// }
// OBJECT IDENTIFIER
// An ObjectIdentifier represents an ASN.1 OBJECT IDENTIFIER.
// type ObjectIdentifier []int
// // Equal reports whether oi and other represent the same identifier.
// func (oi ObjectIdentifier) Equal(other ObjectIdentifier) bool {
// if len(oi) != len(other) {
// return false
// }
// for i := 0; i < len(oi); i++ {
// if oi[i] != other[i] {
// return false
// }
// }
// return true
// }
// func (oi ObjectIdentifier) String() string {
// var s string
// for i, v := range oi {
// if i > 0 {
// s += "."
// }
// s += strconv.Itoa(v)
// }
// return s
// }
// // parseObjectIdentifier parses an OBJECT IDENTIFIER from the given bytes and
// // returns it. An object identifier is a sequence of variable length integers
// // that are assigned in a hierarchy.
// func parseObjectIdentifier(bytes []byte) (s []int, err error) {
// if len(bytes) == 0 {
// err = SyntaxError{"zero length OBJECT IDENTIFIER"}
// return
// }
// // In the worst case, we get two elements from the first byte (which is
// // encoded differently) and then every varint is a single byte long.
// s = make([]int, len(bytes)+1)
// // The first varint is 40*value1 + value2:
// // According to this packing, value1 can take the values 0, 1 and 2 only.
// // When value1 = 0 or value1 = 1, then value2 is <= 39. When value1 = 2,
// // then there are no restrictions on value2.
// v, offset, err := parseBase128Int(bytes, 0)
// if err != nil {
// return
// }
// if v < 80 {
// s[0] = v / 40
// s[1] = v % 40
// } else {
// s[0] = 2
// s[1] = v - 80
// }
// i := 2
// for ; offset < len(bytes); i++ {
// v, offset, err = parseBase128Int(bytes, offset)
// if err != nil {
// return
// }
// s[i] = v
// }
// s = s[0:i]
// return
// }
// ENUMERATED
// An Enumerated is represented as a plain int.
type Enumerated int
// FLAG
// A Flag accepts any data and is set to true if present.
type Flag bool
// parseBase128Int parses a base-128 encoded int from the given offset in the
// given byte slice. It returns the value and the new offset.
func parseBase128Int(bytes []byte, initOffset int) (ret, offset int, err error) {
offset = initOffset
for shifted := 0; offset < len(bytes); shifted++ {
if shifted > 4 {
err = StructuralError{"base 128 integer too large"}
return
}
ret <<= 7
b := bytes[offset]
ret |= int(b & 0x7f)
offset++
if b&0x80 == 0 {
return
}
}
err = SyntaxError{"truncated base 128 integer"}
return
}
func sizeBase128Int(value int) (size int) {
for i := value; i > 0; i >>= 7 {
size++
}
return
}
// Write start as the end of the slice and goes back
// We assume we have enough size
func writeBase128Int(bytes *Bytes, value int) (size int) {
for ; value > 0 || size == 0; value >>= 7 { // Write at least one byte even if the value is 0
// Get the 7 lowest bits
b := byte(value) & 0x7f
if value < 128 {
b |= 0x80
}
bytes.writeBytes([]byte{b})
size++
}
return
}
// // UTCTime
// func parseUTCTime(bytes []byte) (ret time.Time, err error) {
// s := string(bytes)
// ret, err = time.Parse("0601021504Z0700", s)
// if err != nil {
// ret, err = time.Parse("060102150405Z0700", s)
// }
// if err == nil && ret.Year() >= 2050 {
// // UTCTime only encodes times prior to 2050. See https://tools.ietf.org/html/rfc5280#section-4.1.2.5.1
// ret = ret.AddDate(-100, 0, 0)
// }
// return
// }
// // parseGeneralizedTime parses the GeneralizedTime from the given byte slice
// // and returns the resulting time.
// func parseGeneralizedTime(bytes []byte) (ret time.Time, err error) {
// return time.Parse("20060102150405Z0700", string(bytes))
// }
// // PrintableString
// // parsePrintableString parses a ASN.1 PrintableString from the given byte
// // array and returns it.
// func parsePrintableString(bytes []byte) (ret string, err error) {
// for _, b := range bytes {
// if !isPrintable(b) {
// err = SyntaxError{"PrintableString contains invalid character"}
// return
// }
// }
// ret = string(bytes)
// return
// }
// // isPrintable returns true iff the given b is in the ASN.1 PrintableString set.
// func isPrintable(b byte) bool {
// return 'a' <= b && b <= 'z' ||
// 'A' <= b && b <= 'Z' ||
// '0' <= b && b <= '9' ||
// '\'' <= b && b <= ')' ||
// '+' <= b && b <= '/' ||
// b == ' ' ||
// b == ':' ||
// b == '=' ||
// b == '?' ||
// // This is technically not allowed in a PrintableString.
// // However, x509 certificates with wildcard strings don't
// // always use the correct string type so we permit it.
// b == '*'
// }
// // IA5String
// // parseIA5String parses a ASN.1 IA5String (ASCII string) from the given
// // byte slice and returns it.
// func parseIA5String(bytes []byte) (ret string, err error) {
// for _, b := range bytes {
// if b >= 0x80 {
// err = SyntaxError{"IA5String contains invalid character"}
// return
// }
// }
// ret = string(bytes)
// return
// }
// // T61String
// // parseT61String parses a ASN.1 T61String (8-bit clean string) from the given
// // byte slice and returns it.
// func parseT61String(bytes []byte) (ret string, err error) {
// return string(bytes), nil
// }
// UTF8String
// parseUTF8String parses a ASN.1 UTF8String (raw UTF-8) from the given byte
// array and returns it.
// func parseUTF8String(bytes []byte) (ret string, err error) {
// return string(bytes), nil
// }
// func sizeUTF8String(s string) int {
// return len(s)
// }
// func writeUTF8String(bytes *Bytes, s string) int {
// return bytes.writeString(s)
// }
// Octet string
func parseOctetString(bytes []byte) (ret []byte, err error) {
return bytes, nil
}
func sizeOctetString(s []byte) int {
return len(s)
}
func writeOctetString(bytes *Bytes, s []byte) int {
return bytes.writeBytes(s)
}
// A RawValue represents an undecoded ASN.1 object.
type RawValue struct {
Class, Tag int
IsCompound bool
Bytes []byte
FullBytes []byte // includes the tag and length
}
// RawContent is used to signal that the undecoded, DER data needs to be
// preserved for a struct. To use it, the first field of the struct must have
// this type. It's an error for any of the other fields to have this type.
type RawContent []byte
// Tagging
// parseTagAndLength parses an ASN.1 tag and length pair from the given offset
// into a byte slice. It returns the parsed data and the new offset. SET and
// SET OF (tag 17) are mapped to SEQUENCE and SEQUENCE OF (tag 16) since we
// don't distinguish between ordered and unordered objects in this code.
func parseTagAndLength(bytes []byte, initOffset int) (ret TagAndLength, offset int, err error) {
offset = initOffset
b := bytes[offset]
offset++
ret.Class = int(b >> 6)
ret.IsCompound = b&0x20 == 0x20
ret.Tag = int(b & 0x1f)
// If the bottom five bits are set, then the tag number is actually base 128
// encoded afterwards
if ret.Tag == 0x1f {
ret.Tag, offset, err = parseBase128Int(bytes, offset)
if err != nil {
return
}
}
if offset >= len(bytes) {
err = SyntaxError{"truncated tag or length"}
return
}
b = bytes[offset]
offset++
if b&0x80 == 0 {
// The length is encoded in the bottom 7 bits.
ret.Length = int(b & 0x7f)
} else {
// Bottom 7 bits give the number of length bytes to follow.
numBytes := int(b & 0x7f)
if numBytes == 0 {
err = SyntaxError{"indefinite length found (not DER)"}
return
}
ret.Length = 0
for i := 0; i < numBytes; i++ {
if offset >= len(bytes) {
err = SyntaxError{"truncated tag or length"}
return
}
b = bytes[offset]
offset++
if ret.Length >= 1<<23 {
// We can't shift ret.length up without
// overflowing.
err = StructuralError{"length too large"}
return
}
ret.Length <<= 8
ret.Length |= int(b)
if ret.Length == 0 {
// DER requires that lengths be minimal.
err = StructuralError{"superfluous leading zeros in length"}
return
}
}
}
return
}
// func writeTagAndLength(out *forkableWriter, t tagAndLength) (err error) {
// b := uint8(t.class) << 6
// if t.isCompound {
// b |= 0x20
// }
// if t.tag >= 31 {
// b |= 0x1f
// err = out.WriteByte(b)
// if err != nil {
// return
// }
// err = marshalBase128Int(out, int64(t.tag))
// if err != nil {
// return
// }
// } else {
// b |= uint8(t.tag)
// err = out.WriteByte(b)
// if err != nil {
// return
// }
// }
// if t.length >= 128 {
// l := lengthLength(t.length)
// err = out.WriteByte(0x80 | byte(l))
// if err != nil {
// return
// }
// err = marshalLength(out, t.length)
// if err != nil {
// return
// }
// } else {
// err = out.WriteByte(byte(t.length))
// if err != nil {
// return
// }
// }
// return nil
// }
func sizeTagAndLength(tag int, length int) (size int) {
// Compute the size of the tag
size = 1
if tag >= 31 {
// Long-form identifier if the tag is greater than 30
// http://en.wikipedia.org/wiki/X.690#Identifier_tags_greater_than_30
size += sizeBase128Int(tag)
}
// Compute the size of the length using the definite form
// http://en.wikipedia.org/wiki/X.690#The_definite_form
size += 1
if length >= 128 {
size += 1
for length > 255 {
size++
length >>= 8
}
}
return
}
func writeTagAndLength(bytes *Bytes, t TagAndLength) (size int) {
// We are writing backward, so write the length bytes first
if t.Length < 0 {
panic("Can't have a negative length")
} else if t.Length >= 128 {
lengthBytes := 0
val := t.Length
for val > 0 {
lengthBytes++
bytes.writeBytes([]byte{byte(val & 0xff)})
val >>= 8
}
bytes.writeBytes([]byte{byte(0x80 | byte(lengthBytes))})
size += lengthBytes + 1
} else if t.Length < 128 {
size += bytes.writeBytes([]byte{byte(t.Length)})
}
// Then write the tag
b := uint8(t.Class) << 6
if t.IsCompound {
b |= 0x20
}
if t.Tag >= 31 {
b |= 0x1f
size += writeBase128Int(bytes, t.Tag)
} else {
b |= uint8(t.Tag)
}
size += bytes.writeBytes([]byte{byte(b)})
return
}
//
// END encoding/asn1/asn1.go
//