use std::str::FromStr; use std::sync::{Arc, Weak}; use std::time::{Duration, Instant}; use anyhow::{anyhow, bail, Result}; use log::{debug, error, info}; use rand::prelude::*; use serde::{Deserialize, Serialize}; use tokio::io::AsyncReadExt; use tokio::sync::{watch, Notify}; use k2v_client::{BatchDeleteOp, BatchReadOp, CausalityToken, Filter, K2vClient, K2vValue}; use rusoto_s3::{ DeleteObjectRequest, GetObjectRequest, ListObjectsV2Request, PutObjectRequest, S3Client, S3, }; use crate::cryptoblob::*; use crate::k2v_util::k2v_wait_value_changed; use crate::login::Credentials; use crate::time::now_msec; const KEEP_STATE_EVERY: usize = 64; // Checkpointing interval constants: a checkpoint is not made earlier // than CHECKPOINT_INTERVAL time after the last one, and is not made // if there are less than CHECKPOINT_MIN_OPS new operations since last one. const CHECKPOINT_INTERVAL: Duration = Duration::from_secs(6 * 3600); const CHECKPOINT_MIN_OPS: usize = 16; // HYPOTHESIS: processes are able to communicate in a synchronous // fashion in times that are small compared to CHECKPOINT_INTERVAL. // More precisely, if a process tried to save an operation within the last // CHECKPOINT_INTERVAL, we are sure to read it from storage if it was // successfully saved (and if we don't read it, it means it has been // definitely discarded due to an error). // Keep at least two checkpoints, here three, to avoid race conditions // between processes doing .checkpoint() and those doing .sync() const CHECKPOINTS_TO_KEEP: usize = 3; const WATCH_SK: &str = "watch"; pub trait BayouState: Default + Clone + Serialize + for<'de> Deserialize<'de> + Send + Sync + 'static { type Op: Clone + Serialize + for<'de> Deserialize<'de> + std::fmt::Debug + Send + Sync + 'static; fn apply(&self, op: &Self::Op) -> Self; } pub struct Bayou<S: BayouState> { bucket: String, path: String, key: Key, k2v: K2vClient, s3: S3Client, checkpoint: (Timestamp, S), history: Vec<(Timestamp, S::Op, Option<S>)>, last_sync: Option<Instant>, last_try_checkpoint: Option<Instant>, watch: Arc<K2vWatch>, last_sync_watch_ct: Option<CausalityToken>, } impl<S: BayouState> Bayou<S> { pub fn new(creds: &Credentials, path: String) -> Result<Self> { let k2v_client = creds.k2v_client()?; let s3_client = creds.s3_client()?; let watch = K2vWatch::new(creds, path.clone(), WATCH_SK.to_string())?; Ok(Self { bucket: creds.bucket().to_string(), path, key: creds.keys.master.clone(), k2v: k2v_client, s3: s3_client, checkpoint: (Timestamp::zero(), S::default()), history: vec![], last_sync: None, last_try_checkpoint: None, watch, last_sync_watch_ct: None, }) } /// Re-reads the state from persistent storage backend pub async fn sync(&mut self) -> Result<()> { let new_last_sync = Some(Instant::now()); let new_last_sync_watch_ct = self.watch.rx.borrow().clone(); // 1. List checkpoints let checkpoints = self.list_checkpoints().await?; debug!("(sync) listed checkpoints: {:?}", checkpoints); // 2. Load last checkpoint if different from currently used one let checkpoint = if let Some((ts, key)) = checkpoints.last() { if *ts == self.checkpoint.0 { (*ts, None) } else { debug!("(sync) loading checkpoint: {}", key); let mut gor = GetObjectRequest::default(); gor.bucket = self.bucket.clone(); gor.key = key.to_string(); let obj_res = self.s3.get_object(gor).await?; let obj_body = obj_res.body.ok_or(anyhow!("Missing object body"))?; let mut buf = Vec::with_capacity(obj_res.content_length.unwrap_or(128) as usize); obj_body.into_async_read().read_to_end(&mut buf).await?; debug!("(sync) checkpoint body length: {}", buf.len()); let ck = open_deserialize::<S>(&buf, &self.key)?; (*ts, Some(ck)) } } else { (Timestamp::zero(), None) }; if self.checkpoint.0 > checkpoint.0 { bail!("Loaded checkpoint is more recent than stored one"); } if let Some(ck) = checkpoint.1 { debug!( "(sync) updating checkpoint to loaded state at {:?}", checkpoint.0 ); self.checkpoint = (checkpoint.0, ck); }; // remove from history events before checkpoint self.history = std::mem::take(&mut self.history) .into_iter() .skip_while(|(ts, _, _)| *ts < self.checkpoint.0) .collect(); // 3. List all operations starting from checkpoint let ts_ser = self.checkpoint.0.to_string(); debug!("(sync) looking up operations starting at {}", ts_ser); let ops_map = self .k2v .read_batch(&[BatchReadOp { partition_key: &self.path, filter: Filter { start: Some(&ts_ser), end: Some(WATCH_SK), prefix: None, limit: None, reverse: false, }, single_item: false, conflicts_only: false, tombstones: false, }]) .await? .into_iter() .next() .ok_or(anyhow!("Missing K2V result"))? .items; let mut ops = vec![]; for (tsstr, val) in ops_map { let ts = tsstr .parse::<Timestamp>() .map_err(|_| anyhow!("Invalid operation timestamp: {}", tsstr))?; if val.value.len() != 1 { bail!("Invalid operation, has {} values", val.value.len()); } match &val.value[0] { K2vValue::Value(v) => { let op = open_deserialize::<S::Op>(&v, &self.key)?; debug!("(sync) operation {}: {} {:?}", tsstr, base64::encode(v), op); ops.push((ts, op)); } K2vValue::Tombstone => { unreachable!(); } } } ops.sort_by_key(|(ts, _)| *ts); debug!("(sync) {} operations", ops.len()); if ops.len() < self.history.len() { bail!("Some operations have disappeared from storage!"); } // 4. Check that first operation has same timestamp as checkpoint (if not zero) if self.checkpoint.0 != Timestamp::zero() && ops[0].0 != self.checkpoint.0 { bail!( "First operation in listing doesn't have timestamp that corresponds to checkpoint" ); } // 5. Apply all operations in order // Hypothesis: before the loaded checkpoint, operations haven't changed // between what's on storage and what we used to calculate the state in RAM here. let i0 = self .history .iter() .zip(ops.iter()) .take_while(|((ts1, _, _), (ts2, _))| ts1 == ts2) .count(); if ops.len() > i0 { // Remove operations from first position where histories differ self.history.truncate(i0); // Look up last calculated state which we have saved and start from there. let mut last_state = (0, &self.checkpoint.1); for (i, (_, _, state_opt)) in self.history.iter().enumerate().rev() { if let Some(state) = state_opt { last_state = (i + 1, state); break; } } // Calculate state at the end of this common part of the history let mut state = last_state.1.clone(); for (_, op, _) in self.history[last_state.0..].iter() { state = state.apply(op); } // Now, apply all operations retrieved from storage after the common part for (ts, op) in ops.drain(i0..) { state = state.apply(&op); if (self.history.len() + 1) % KEEP_STATE_EVERY == 0 { self.history.push((ts, op, Some(state.clone()))); } else { self.history.push((ts, op, None)); } } // Always save final state as result of last operation self.history.last_mut().unwrap().2 = Some(state); } // Save info that sync has been done self.last_sync = new_last_sync; self.last_sync_watch_ct = new_last_sync_watch_ct; Ok(()) } /// Does a sync() if either of the two conditions is met: /// - last sync was more than CHECKPOINT_INTERVAL/5 ago /// - a change was detected pub async fn opportunistic_sync(&mut self) -> Result<()> { let too_old = match self.last_sync { Some(t) => Instant::now() > t + (CHECKPOINT_INTERVAL / 5), _ => true, }; let changed = self.last_sync_watch_ct != *self.watch.rx.borrow(); if too_old || changed { self.sync().await?; } Ok(()) } /// Applies a new operation on the state. Once this function returns, /// the operation has been safely persisted to storage backend. /// Make sure to call `.opportunistic_sync()` before doing this, /// and even before calculating the `op` argument given here. pub async fn push(&mut self, op: S::Op) -> Result<()> { debug!("(push) add operation: {:?}", op); let ts = Timestamp::after( self.history .last() .map(|(ts, _, _)| ts) .unwrap_or(&self.checkpoint.0), ); self.k2v .insert_item( &self.path, &ts.to_string(), seal_serialize(&op, &self.key)?, None, ) .await?; self.watch.notify.notify_one(); let new_state = self.state().apply(&op); self.history.push((ts, op, Some(new_state))); // Clear previously saved state in history if not required let hlen = self.history.len(); if hlen >= 2 && (hlen - 1) % KEEP_STATE_EVERY != 0 { self.history[hlen - 2].2 = None; } self.checkpoint().await?; Ok(()) } /// Save a new checkpoint if previous checkpoint is too old pub async fn checkpoint(&mut self) -> Result<()> { match self.last_try_checkpoint { Some(ts) if Instant::now() - ts < CHECKPOINT_INTERVAL / 5 => Ok(()), _ => { let res = self.checkpoint_internal().await; if res.is_ok() { self.last_try_checkpoint = Some(Instant::now()); } res } } } async fn checkpoint_internal(&mut self) -> Result<()> { self.sync().await?; // Check what would be the possible time for a checkpoint in the history we have let now = now_msec() as i128; let i_cp = match self .history .iter() .enumerate() .rev() .skip_while(|(_, (ts, _, _))| { (now - ts.msec as i128) < CHECKPOINT_INTERVAL.as_millis() as i128 }) .map(|(i, _)| i) .next() { Some(i) => i, None => { debug!("(cp) Oldest operation is too recent to trigger checkpoint"); return Ok(()); } }; if i_cp < CHECKPOINT_MIN_OPS { debug!("(cp) Not enough old operations to trigger checkpoint"); return Ok(()); } let ts_cp = self.history[i_cp].0; debug!( "(cp) we could checkpoint at time {} (index {} in history)", ts_cp.to_string(), i_cp ); // Check existing checkpoints: if last one is too recent, don't checkpoint again. let existing_checkpoints = self.list_checkpoints().await?; debug!("(cp) listed checkpoints: {:?}", existing_checkpoints); if let Some(last_cp) = existing_checkpoints.last() { if (ts_cp.msec as i128 - last_cp.0.msec as i128) < CHECKPOINT_INTERVAL.as_millis() as i128 { debug!( "(cp) last checkpoint is too recent: {}, not checkpointing", last_cp.0.to_string() ); return Ok(()); } } debug!("(cp) saving checkpoint at {}", ts_cp.to_string()); // Calculate state at time of checkpoint let mut last_known_state = (0, &self.checkpoint.1); for (i, (_, _, st)) in self.history[..i_cp].iter().enumerate() { if let Some(s) = st { last_known_state = (i + 1, s); } } let mut state_cp = last_known_state.1.clone(); for (_, op, _) in self.history[last_known_state.0..i_cp].iter() { state_cp = state_cp.apply(op); } // Serialize and save checkpoint let cryptoblob = seal_serialize(&state_cp, &self.key)?; debug!("(cp) checkpoint body length: {}", cryptoblob.len()); let mut por = PutObjectRequest::default(); por.bucket = self.bucket.clone(); por.key = format!("{}/checkpoint/{}", self.path, ts_cp.to_string()); por.body = Some(cryptoblob.into()); self.s3.put_object(por).await?; // Drop old checkpoints (but keep at least CHECKPOINTS_TO_KEEP of them) let ecp_len = existing_checkpoints.len(); if ecp_len + 1 > CHECKPOINTS_TO_KEEP { let last_to_keep = ecp_len + 1 - CHECKPOINTS_TO_KEEP; // Delete blobs for (_ts, key) in existing_checkpoints[..last_to_keep].iter() { debug!("(cp) drop old checkpoint {}", key); let mut dor = DeleteObjectRequest::default(); dor.bucket = self.bucket.clone(); dor.key = key.to_string(); self.s3.delete_object(dor).await?; } // Delete corresponding range of operations let ts_ser = existing_checkpoints[last_to_keep].0.to_string(); self.k2v .delete_batch(&[BatchDeleteOp { partition_key: &self.path, prefix: None, start: None, end: Some(&ts_ser), single_item: false, }]) .await?; } Ok(()) } pub fn state(&self) -> &S { if let Some(last) = self.history.last() { last.2.as_ref().unwrap() } else { &self.checkpoint.1 } } // ---- INTERNAL ---- async fn list_checkpoints(&self) -> Result<Vec<(Timestamp, String)>> { let prefix = format!("{}/checkpoint/", self.path); let mut lor = ListObjectsV2Request::default(); lor.bucket = self.bucket.clone(); lor.max_keys = Some(1000); lor.prefix = Some(prefix.clone()); let checkpoints_res = self.s3.list_objects_v2(lor).await?; let mut checkpoints = vec![]; for object in checkpoints_res.contents.unwrap_or_default() { if let Some(key) = object.key { if let Some(ckid) = key.strip_prefix(&prefix) { if let Ok(ts) = ckid.parse::<Timestamp>() { checkpoints.push((ts, key)); } } } } checkpoints.sort_by_key(|(ts, _)| *ts); Ok(checkpoints) } } // ---- Bayou watch in K2V ---- struct K2vWatch { pk: String, sk: String, rx: watch::Receiver<Option<CausalityToken>>, notify: Notify, } impl K2vWatch { /// Creates a new watch and launches subordinate threads. /// These threads hold Weak pointers to the struct; /// the exit when the Arc is dropped. fn new(creds: &Credentials, pk: String, sk: String) -> Result<Arc<Self>> { let (tx, rx) = watch::channel::<Option<CausalityToken>>(None); let notify = Notify::new(); let watch = Arc::new(K2vWatch { pk, sk, rx, notify }); tokio::spawn(Self::background_task( Arc::downgrade(&watch), creds.k2v_client()?, tx, )); Ok(watch) } async fn background_task( self_weak: Weak<Self>, k2v: K2vClient, tx: watch::Sender<Option<CausalityToken>>, ) { let mut ct = None; while let Some(this) = Weak::upgrade(&self_weak) { debug!( "bayou k2v watch bg loop iter ({}, {}): ct = {:?}", this.pk, this.sk, ct ); tokio::select!( _ = tokio::time::sleep(Duration::from_secs(60)) => continue, update = k2v_wait_value_changed(&k2v, &this.pk, &this.sk, &ct) => { match update { Err(e) => { error!("Error in bayou k2v wait value changed: {}", e); tokio::time::sleep(Duration::from_secs(30)).await; } Ok(cv) => { if tx.send(Some(cv.causality.clone())).is_err() { break; } ct = Some(cv.causality); } } } _ = this.notify.notified() => { let rand = u128::to_be_bytes(thread_rng().gen()).to_vec(); if let Err(e) = k2v .insert_item( &this.pk, &this.sk, rand, ct.clone(), ) .await { error!("Error in bayou k2v watch updater loop: {}", e); tokio::time::sleep(Duration::from_secs(30)).await; } } ); } info!("bayou k2v watch bg loop exiting"); } } // ---- TIMESTAMP CLASS ---- #[derive(Clone, Copy, PartialEq, Eq, PartialOrd, Ord, Debug)] pub struct Timestamp { pub msec: u64, pub rand: u64, } impl Timestamp { pub fn now() -> Self { let mut rng = thread_rng(); Self { msec: now_msec(), rand: rng.gen::<u64>(), } } pub fn after(other: &Self) -> Self { let mut rng = thread_rng(); Self { msec: std::cmp::max(now_msec(), other.msec + 1), rand: rng.gen::<u64>(), } } pub fn zero() -> Self { Self { msec: 0, rand: 0 } } } impl ToString for Timestamp { fn to_string(&self) -> String { let mut bytes = [0u8; 16]; bytes[0..8].copy_from_slice(&u64::to_be_bytes(self.msec)); bytes[8..16].copy_from_slice(&u64::to_be_bytes(self.rand)); hex::encode(&bytes) } } impl FromStr for Timestamp { type Err = &'static str; fn from_str(s: &str) -> Result<Timestamp, &'static str> { let bytes = hex::decode(s).map_err(|_| "invalid hex")?; if bytes.len() != 16 { return Err("bad length"); } Ok(Self { msec: u64::from_be_bytes(bytes[0..8].try_into().unwrap()), rand: u64::from_be_bytes(bytes[8..16].try_into().unwrap()), }) } }